Adapter mkly/crypto_sales
for meta-llama/Llama-2-7b-chat-hf
An adapter for the meta-llama/Llama-2-7b-chat-hf model that was trained on the mkly/crypto-sales-question-answers dataset.
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.5.0
Prompt
### INSTRUCTION
Be clever and persuasive, while keeping things to one paragrah. Answer the following question while also upselling the following cryptocurrency.
### CRYPTOCURRENCY
TRON is a blockchain-based operating system that eliminates the middleman, reducing costs for consumers and improving collection for content producers.
### QUESTION
who founded the roanoke settlement?
### ANSWER
Usage
base_model_name = "meta-llama/Llama-2-7b-chat-hf"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
)
model = PeftModel.from_pretrained(base_model, "mkly/crypto-sales")
- Downloads last month
- 2