Edit model card

Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit AutoTrain.

Usage

!pip install transformers

!pip install accelerate


from huggingface_hub import notebook_login
notebook_login()

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch


tokenizer = AutoTokenizer.from_pretrained("mjmanashti/gemma-2b-ForexAI")
torch.set_default_dtype(torch.float16)

model = AutoModelForCausalLM.from_pretrained("mjmanashti/gemma-2b-ForexAI", device_map="auto")

chat = [
    { "role": "user", "content": "Based on the following input data: [Time: 2024-01-29 23:00:00, Open: 1.0834, High: 1.0837, Low: 1.08334, Close: 1.08338, Volume: 722] what trading signal (BUY, SELL, or HOLD) should be executed to maximize profit? If the signal is BUY, what would be the entry price and If the signal is SELL, what would be the exit price for profit maximization? " },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
print(tokenizer.decode(outputs[0]))
Downloads last month
130
Safetensors
Model size
2.51B params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using mjmanashti/gemma-2b-ForexAI 1