Edit model card

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Model Card for Codestral-22B-v0.1

๐Ÿšซ The transformers tokenizer is not properly configured. Make sure that your encoding and decoding is correct by using mistral-common as shown below:

Encode and Decode with mistral_common

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
mistral_models_path = "MISTRAL_MODELS_PATH"
tokenizer = MistralTokenizer.v3()
completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
tokens = tokenizer.encode_chat_completion(completion_request).tokens

Inference with mistral_inference

from mistral_inference.model import Transformer
from mistral_inference.generate import generate

model = Transformer.from_folder(mistral_models_path)
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)

result = tokenizer.decode(out_tokens[0])


Inference with hugging face transformers

from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("mistralai/Codestral-22B-v0.1")
generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True)

# decode with mistral tokenizer
result = tokenizer.decode(generated_ids[0].tolist())

PRs to correct the transformers tokenizer so that it gives 1-to-1 the same results as the mistral_common reference implementation are very welcome!

Codestral-22B-v0.1 is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash (more details in the Blogpost). The model can be queried:

  • As instruct, for instance to answer any questions about a code snippet (write documentation, explain, factorize) or to generate code following specific indications
  • As Fill in the Middle (FIM), to predict the middle tokens between a prefix and a suffix (very useful for software development add-ons like in VS Code)


It is recommended to use mistralai/Codestral-22B-v0.1 with mistral-inference.

pip install mistral_inference


from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', 'Codestral-22B-v0.1')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Codestral-22B-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)


After installing mistral_inference, a mistral-chat CLI command should be available in your environment.

mistral-chat $HOME/mistral_models/Codestral-22B-v0.1 --instruct --max_tokens 256

Will generate an answer to "Write me a function that computes fibonacci in Rust" and should give something along the following lines:

Sure, here's a simple implementation of a function that computes the Fibonacci sequence in Rust. This function takes an integer `n` as an argument and returns the `n`th Fibonacci number.

fn fibonacci(n: u32) -> u32 {
    match n {
        0 => 0,
        1 => 1,
        _ => fibonacci(n - 1) + fibonacci(n - 2),

fn main() {
    let n = 10;
    println!("The {}th Fibonacci number is: {}", n, fibonacci(n));

This function uses recursion to calculate the Fibonacci number. However, it's not the most efficient solution because it performs a lot of redundant calculations. A more efficient solution would use a loop to iteratively calculate the Fibonacci numbers.

Fill-in-the-middle (FIM)

After installing mistral_inference and running pip install --upgrade mistral_common to make sure to have mistral_common>=1.2 installed:

from mistral_inference.model import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.instruct.request import FIMRequest

tokenizer = MistralTokenizer.v3()
model = Transformer.from_folder("~/codestral-22B-240529")

prefix = """def add("""
suffix = """    return sum"""

request = FIMRequest(prompt=prefix, suffix=suffix)

tokens = tokenizer.encode_fim(request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

middle = result.split(suffix)[0].strip()

Should give something along the following lines:

num1, num2):

    # Add two numbers
    sum = num1 + num2

    # return the sum

Usage with transformers library

This model is also compatible with transformers library, first run pip install -U transformers then use the snippet below to quickly get started:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Codestral-22B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id)

text = "Hello my name is"
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem.


The Codestral-22B-v0.1 does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.


Codestral-22B-v0.1 is released under the MNLP-0.1 license.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Jean-Malo Delignon, Jia Li, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lรฉlio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickael Seznec, Nicolas Schuhl, Patrick von Platen, Romain Sauvestre, Pierre Stock, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Thibault Schueller, Timothรฉe Lacroix, Thรฉophile Gervet, Thomas Wang, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall

Downloads last month
Model size
22.2B params
Tensor type
Inference API (serverless) has been turned off for this model.

Spaces using mistralai/Codestral-22B-v0.1 7