File size: 4,826 Bytes
253445f
 
 
a10d185
253445f
 
 
 
a10d185
04eb9fb
253445f
3178e51
253445f
1a698d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253445f
7e74878
253445f
7e74878
 
 
 
253445f
7e74878
e0009c4
7e74878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c82cd15
0046a92
7e74878
253445f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e74878
253445f
 
 
a10d185
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
language:
- en
license: apache-2.0
---

# Text Classification Toxicity

This model is a fined-tuned version of [MiniLMv2-L6-H384](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large) on the on the [Jigsaw 1st Kaggle competition](https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge) dataset using [unitary/toxic-bert](https://huggingface.co/unitary/toxic-bert) as teacher model.
The original unquantized model can be found [here](https://huggingface.co/minuva/MiniLMv2-toxic-jigsaw-lite).

The model contains two labels only (toxicity and severe toxicity). For the model with all labels refer to this [page](https://huggingface.co/minuva/MiniLMv2-toxic-jigsaw)


# Optimum

## Installation

Install from source: 
```bash
python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git
```


## Run the Model
```py
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline

model = ORTModelForSequenceClassification.from_pretrained('minuva/MiniLMv2-toxic-jigsaw-lite-onnx', provider="CPUExecutionProvider")
tokenizer = AutoTokenizer.from_pretrained('minuva/MiniLMv2-toxic-jigsaw-lite-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length')

pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, )
texts = ["This is pure trash",]
pipe(texts)
# [{'label': 'toxic', 'score': 0.6553249955177307}]
```

#  ONNX Runtime only

A lighter solution for deployment


## Installation

```bash
pip install tokenizers
pip install onnxruntime
git clone https://huggingface.co/minuva/MiniLMv2-toxic-jigsaw-lite-onnx
```
## Load the Model
```py
import os
import numpy as np
import json

from tokenizers import Tokenizer
from onnxruntime import InferenceSession


model_name = "minuva/MiniLMv2-toxic-jigsaw-lite-onnx"
tokenizer = Tokenizer.from_pretrained(model_name)
tokenizer.enable_padding()
tokenizer.enable_truncation(max_length=256)
batch_size = 16

texts = ["This is pure trash",]
outputs = []
model = InferenceSession("MiniLMv2-toxic-jigsaw-lite-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])

with open(os.path.join("MiniLMv2-toxic-jigsaw-lite-onnx", "config.json"), "r") as f:
            config = json.load(f)

output_names = [output.name for output in model.get_outputs()]
input_names = [input.name for input in model.get_inputs()]

for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
            encodings = tokenizer.encode_batch(list(subtexts))
            inputs = {
                "input_ids": np.vstack(
                    [encoding.ids for encoding in encodings],
                ),
                "attention_mask": np.vstack(
                    [encoding.attention_mask for encoding in encodings],
                ),
                "token_type_ids": np.vstack(
                    [encoding.type_ids for encoding in encodings],
                ),
            }

            for input_name in input_names:
                if input_name not in inputs:
                    raise ValueError(f"Input name {input_name} not found in inputs")

            inputs = {input_name: inputs[input_name] for input_name in input_names}
            output = np.squeeze(
                np.stack(
                    model.run(output_names=output_names, input_feed=inputs)
                ),
                axis=0,
            )
            outputs.append(output)

outputs = np.concatenate(outputs, axis=0)
scores = 1 / (1 + np.exp(-outputs))
results = []
for item in scores:
    labels = []
    scores = []
    for idx, s in enumerate(item):
        labels.append(config["id2label"][str(idx)])
        scores.append(float(s))
    results.append({"labels": labels, "scores": scores})

res = []

for result in results:
    joined = list(zip(result['labels'], result['scores']))
    max_score = max(joined, key=lambda x: x[1])    
    res.append(max_score)

res
# [('toxic', 0.6553249955177307)]
```

# Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 48
- eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- warmup_ratio: 0.1


# Metrics (comparison with teacher model)

| Teacher (params)    |   Student (params)     | Set  (metric)     | Score (teacher)    |    Score (student)      |
|--------------------|-------------|----------|--------| --------|
| unitary/toxic-bert (110M) |  MiniLMv2-toxic-jigsaw-lite (23M)  | Test (ROC_AUC)  | 0.982677 | 0.9806 |

# Deployment

Check our [fast-nlp-text-toxicity repository](https://github.com/minuva/fast-nlp-text-toxicity) for a FastAPI and ONNX based server to deploy this model on CPU devices.