Mii-LLM

Maestrale chat alpha ༄

By @efederici and @mferraretto

Model description

  • Language Model: Mistral-7b for the Italian language, continued pre-training for Italian on a curated large-scale high-quality corpus.
  • Fine-Tuning: SFT performed on convs/instructions for two epochs.

v0.3

  • Function calling
  • Reduced default system prompt to avoid wasting tokens (pre-alignment)

This model uses ChatML prompt format:

<|im_start|>system
Sei un assistente utile.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Usage:

from transformers import (
    AutoTokenizer, 
    AutoModelForCausalLM, 
    GenerationConfig,
    TextStreamer
)
import torch

tokenizer = AutoTokenizer.from_pretrained("mii-llm/maestrale-chat-v0.3-alpha")
model = AutoModelForCausalLM.from_pretrained("mii-llm/maestrale-chat-v0.3-alpha", load_in_8bit=True, device_map="auto")

gen = GenerationConfig(
    do_sample=True,
    temperature=0.7,
    repetition_penalty=1.2,
    top_k=50,
    top_p=0.95,
    max_new_tokens=500,
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.convert_tokens_to_ids("<|im_end|>")
)

messages = [
    {"role": "system", "content": "Sei un assistente utile."},
    {"role": "user", "content": "{prompt}"}
]

with torch.no_grad(), torch.backends.cuda.sdp_kernel(
    enable_flash=True, 
    enable_math=False,
    enable_mem_efficient=False
):
    temp = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(temp, return_tensors="pt").to("cuda")

    streamer = TextStreamer(tokenizer, skip_prompt=True)

    _ = model.generate(
        **inputs,
        streamer=streamer,
        generation_config=gen
    )

Intended uses & limitations

It's an alpha version, it's not aligned. It's a first test. We are working on alignment data and evals.

Built with Axolotl

Downloads last month
20
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.