File size: 2,254 Bytes
2f89b19 af2577e 2f89b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
tags:
- conversational
license: mit
---
## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)
DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations.
The [human evaluation results](https://github.com/dreasysnail/Dialogpt_dev#human-evaluation) indicate that the response generated from DialoGPT is comparable to human response quality under a single-turn conversation Turing test.
The model is trained on 147M multi-turn dialogue from Reddit discussion thread.
* Multi-turn generation examples from an interactive environment:
|Role | Response |
|---------|--------|
|User | Hi . |
| Bot | You need help . |
|User | will you help me ? |
| Bot | You stupid or something it is the reason for my existence . |
|User | Ok, what is the square root or 4 ? |
| Bot | The answer is 2 . |
Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT)
ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536)
### How to use
Now we are ready to try out how the model works as a chatting partner!
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
# Let's chat for 5 lines
for step in range(5):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# pretty print last ouput tokens from bot
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
|