Edit model card

# Fast-Inference with Ctranslate2

Speedup inference by 2x-8x using int8 inference in C++

quantized version of Helsinki-NLP/opus-mt-de-en

pip install hf-hub-ctranslate2>=1.0.0 ctranslate2>=3.13.0

Converted using

ct2-transformers-converter --model Helsinki-NLP/opus-mt-de-en --output_dir /home/michael/tmp-ct2fast-opus-mt-de-en --force --copy_files README.md generation_config.json tokenizer_config.json vocab.json source.spm .gitattributes target.spm --quantization float16

Checkpoint compatible to ctranslate2 and hf-hub-ctranslate2

  • compute_type=int8_float16 for device="cuda"
  • compute_type=int8 for device="cpu"
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub
from transformers import AutoTokenizer

model_name = "michaelfeil/ct2fast-opus-mt-de-en"
# use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model.
model = TranslatorCT2fromHfHub(
        # load in int8 on CUDA
        model_name_or_path=model_name, 
        device="cuda",
        compute_type="int8_float16",
        tokenizer=AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-de-en")
)
outputs = model.generate(
    text=["How do you call a fast Flan-ingo?", "User: How are you doing?"],
)
print(outputs)

Licence and other remarks:

This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.

Original description

opus-mt-de-en

Benchmarks

testset BLEU chr-F
newssyscomb2009.de.en 29.4 0.557
news-test2008.de.en 27.8 0.548
newstest2009.de.en 26.8 0.543
newstest2010.de.en 30.2 0.584
newstest2011.de.en 27.4 0.556
newstest2012.de.en 29.1 0.569
newstest2013.de.en 32.1 0.583
newstest2014-deen.de.en 34.0 0.600
newstest2015-ende.de.en 34.2 0.599
newstest2016-ende.de.en 40.4 0.649
newstest2017-ende.de.en 35.7 0.610
newstest2018-ende.de.en 43.7 0.667
newstest2019-deen.de.en 40.1 0.642
Tatoeba.de.en 55.4 0.707
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.