Edit model card

fine_tuned_model_on_SJP_dataset_all_balanced_512_tokens_summarized_final_model

This model is a fine-tuned version of joelniklaus/legal-swiss-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6929
  • Accuracy: 0.7962

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7032 1.0 3732 0.6930 0.7962
0.6979 2.0 7464 0.6929 0.7962

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu118
  • Datasets 2.17.0
  • Tokenizers 0.15.1
Downloads last month
6
Safetensors
Model size
435M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mhmmterts/fine_tuned_model_on_SJP_dataset_all_balanced_512_tokens_summarized_final_model

Finetuned
(19)
this model