minang_food_classification

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7860
  • Accuracy: 0.9278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3423 1.0 45 1.3263 0.7889
1.2638 2.0 90 1.2436 0.8278
1.2055 3.0 135 1.2503 0.8
1.14 4.0 180 1.1486 0.85
1.0908 5.0 225 1.0427 0.8778
1.0258 6.0 270 1.0210 0.8333
0.9776 7.0 315 0.9694 0.8722
0.9306 8.0 360 0.9379 0.8833
0.8985 9.0 405 0.9150 0.8778
0.8624 10.0 450 0.8884 0.8611
0.8243 11.0 495 0.8118 0.9222
0.8017 12.0 540 0.8394 0.8833
0.797 13.0 585 0.7761 0.9056
0.7765 14.0 630 0.7891 0.9111
0.7834 15.0 675 0.7945 0.8889
0.7483 16.0 720 0.7801 0.9
0.74 17.0 765 0.7524 0.9167
0.7315 18.0 810 0.7655 0.9111
0.7468 19.0 855 0.7860 0.8833
0.7393 20.0 900 0.7900 0.9056

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
85.8M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using mhdiqbalpradipta/minang_food_classification 3

Evaluation results