Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

This model predicts the sentiment('Negative'/'Positive') for the input sentence. It is fine-tuned mt5-small

The present model supports 6 languages -

  1. English
  2. Hindi
  3. German
  4. Korean
  5. Japanese
  6. Portuguese

Here is how to use this model

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
model = AutoModelForSeq2SeqLM.from_pretrained("Chirayu/mt5-multilingual-sentiment")
tokenizer = AutoTokenizer.from_pretrained("Chirayu/mt5-multilingual-sentiment")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

def get_sentiment(text, num_beams=2,max_length=512, repetition_penalty=2.5, length_penalty=1, early_stopping=True,top_p=.95, top_k=50, num_return_sequences=1):
  
  input_ids = tokenizer.encode(
    text, return_tensors="pt", add_special_tokens=True
  )
  
  input_ids = input_ids.to(device)
  generated_ids = model.generate(
      input_ids=input_ids,
     
      num_beams=num_beams,
      max_length=max_length,
      repetition_penalty=repetition_penalty,
      length_penalty=length_penalty,
      early_stopping=early_stopping,
      top_p=top_p,
      top_k=top_k,
      num_return_sequences=num_return_sequences,
  )
  sentiment = [tokenizer.decode(generated_id,skip_special_tokens=True,clean_up_tokenization_spaces=True,) for generated_id in generated_ids]
  return sentiment
Downloads last month
0
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.