Edit model card

final_merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the task arithmetic merge method using /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064 as a base.

Models Merged

The following models were included in the merge:

  • /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950

Configuration

The following YAML configuration was used to produce this model:

base_model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
dtype: bfloat16
merge_method: task_arithmetic
parameters:
  int8_mask: 1.0
  normalize: 0.0
slices:
- sources:
  - layer_range: [0, 2]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 0.903670769683462
  - layer_range: [0, 2]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [2, 4]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 0.8677123591929141
  - layer_range: [2, 4]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [4, 6]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 1.0080967885131624
  - layer_range: [4, 6]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [6, 8]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 1.288794492088366
  - layer_range: [6, 8]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [8, 10]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 1.0927250789898328
  - layer_range: [8, 10]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [10, 12]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 1.002818025226096
  - layer_range: [10, 12]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [12, 14]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 1.0346267702747531
  - layer_range: [12, 14]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [14, 16]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 1.060865068400883
  - layer_range: [14, 16]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [16, 18]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 1.0141257624580193
  - layer_range: [16, 18]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [18, 20]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 1.2727977176081706
  - layer_range: [18, 20]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
- sources:
  - layer_range: [20, 22]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_chinese_1905817950
    parameters:
      weight: 1.2137521068579595
  - layer_range: [20, 22]
    model: /kaggle/working/evol_merge_storage/input_models/TinyLlama_v1.1_684560064
Downloads last month
10
Safetensors
Model size
1.1B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.