Edit model card

mchochlov/codebert-base-cd-ft

This is a sentence-transformers model: It maps code to a 768 dimensional dense vector space and is specifically fine tuned towards clone detection using contrastive learning on parts of BigCloneBench code.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
code_fragments = [...]

model = SentenceTransformer('mchochlov/codebert-base-cd-ft')
embeddings = model.encode(code_fragments)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('mchochlov/codebert-base-cd-ft')
model = AutoModel.from_pretrained('mchochlov/codebert-base-cd-ft')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

Please cite this paper if using the model.

@inproceedings{chochlov2022using,
  title={Using a Nearest-Neighbour, BERT-Based Approach for Scalable Clone Detection},
  author={Chochlov, Muslim and Ahmed, Gul Aftab and Patten, James Vincent and Lu, Guoxian and Hou, Wei and Gregg, David and Buckley, Jim},
  booktitle={2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)},
  pages={582--591},
  year={2022},
  organization={IEEE}
}
Downloads last month
41
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using mchochlov/codebert-base-cd-ft 3