koOpenChat-sft๐Ÿง

Support Me

์‹œ๋‚˜ํŠธ๋ผ๋Š” ๊ฐœ์ธ ํ”„๋กœ์ ํŠธ๋กœ, 1์ธ์˜ ์ž์›์œผ๋กœ ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ธ์ด ๋งˆ์Œ์— ๋“œ์…จ๋‹ค๋ฉด ์•ฝ๊ฐ„์˜ ์—ฐ๊ตฌ๋น„ ์ง€์›์€ ์–ด๋–จ๊นŒ์š”? Buy me a Coffee

Wanna be a sponser? (Please) Contact me on Telegram AlzarTakkarsen

Model Details

Base Model
OpenChat3.5

Trained On
A100 80GB * 1

Instruction format

It follows ChatML format and Alpaca(No-Input) format.

Model Benchmark

None

Implementation Code

Since, chat_template already contains insturction format above. You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("maywell/koOpenChat-sft")
tokenizer = AutoTokenizer.from_pretrained("maywell/koOpenChat-sft")

messages = [
    {"role": "user", "content": "๋ฐ”๋‚˜๋‚˜๋Š” ์›๋ž˜ ํ•˜์–€์ƒ‰์ด์•ผ?"},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 51.36
ARC (25-shot) 59.81
HellaSwag (10-shot) 78.73
MMLU (5-shot) 61.32
TruthfulQA (0-shot) 51.24
Winogrande (5-shot) 76.4
GSM8K (5-shot) 24.18
DROP (3-shot) 7.82
Downloads last month
5,567
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for maywell/koOpenChat-sft

Quantizations
3 models