Edit model card

🧩 Configuration

base_model: /home/Ubuntu/Desktop/mergekit/models/Mistral-7B-Instruct-v0.2
gate_mode: hidden 
dtype: bfloat16 
experts:
  - source_model: /home/Ubuntu/Desktop/mergekit/models/Mistral-7B-Instruct-v0.2
    positive_prompts:
      - "instructions"
      - "concise"
      - "straightforward"
      - "helpful"
      - "assistant"
    negative_prompts:
      - "vague"
      - "inaccurate"
      - "verbose"
      - "complicated"
      - "speculative"
  - source_model: /home/Ubuntu/Desktop/mergekit/models/NeuralOmniWestBeaglake-7B
    positive_prompts:
      - "storytelling"
      - "role play"
      - "imagine"
      - "artistic"
      - "narrative"
  - source_model: /home/Ubuntu/Desktop/mergekit/models/Kunoichi-DPO-v2-7B
    positive_prompts:
      - "reason"
      - "think step by step"
      - "logic"
      - "knowledge"
    negative_prompts:
      - "artistic"
      - "speculative"
      - "playful"
  - source_model: /home/Ubuntu/Desktop/mergekit/models/Starling-LM-7B-alpha
    positive_prompts:
      - "code"
      - "python"
      - "javascript"
      - "react"
      - "clear"
      - "programming"
    negative_prompts:
      - "error"
      - "art"
      - "role play"

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mayacinka/West-Ramen-7Bx4"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.33
AI2 Reasoning Challenge (25-Shot) 67.58
HellaSwag (10-Shot) 85.52
MMLU (5-Shot) 62.69
TruthfulQA (0-shot) 61.00
Winogrande (5-shot) 81.22
GSM8k (5-shot) 58.00
Downloads last month
68
Safetensors
Model size
24.2B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results