🧩 Configuration
base_model: /home/Ubuntu/Desktop/mergekit/models/Mistral-7B-Instruct-v0.2
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: /home/Ubuntu/Desktop/mergekit/models/Mistral-7B-Instruct-v0.2
positive_prompts:
- "instructions"
- "concise"
- "straightforward"
- "helpful"
- "assistant"
negative_prompts:
- "vague"
- "inaccurate"
- "verbose"
- "complicated"
- "speculative"
- source_model: /home/Ubuntu/Desktop/mergekit/models/NeuralOmniWestBeaglake-7B
positive_prompts:
- "storytelling"
- "role play"
- "imagine"
- "artistic"
- "narrative"
- source_model: /home/Ubuntu/Desktop/mergekit/models/Kunoichi-DPO-v2-7B
positive_prompts:
- "reason"
- "think step by step"
- "logic"
- "knowledge"
negative_prompts:
- "artistic"
- "speculative"
- "playful"
- source_model: /home/Ubuntu/Desktop/mergekit/models/Starling-LM-7B-alpha
positive_prompts:
- "code"
- "python"
- "javascript"
- "react"
- "clear"
- "programming"
negative_prompts:
- "error"
- "art"
- "role play"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mayacinka/West-Ramen-7Bx4"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.33 |
AI2 Reasoning Challenge (25-Shot) | 67.58 |
HellaSwag (10-Shot) | 85.52 |
MMLU (5-Shot) | 62.69 |
TruthfulQA (0-shot) | 61.00 |
Winogrande (5-shot) | 81.22 |
GSM8k (5-shot) | 58.00 |
- Downloads last month
- 68
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard67.580
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.520
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard62.690
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard61.000
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard81.220
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard58.000