出力方法

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
from tqdm import tqdm

def generate_task_outputs(input_jsonl_path, output_jsonl_path):
    # モデルとトークナイザーのロード
    model = AutoModelForCausalLM.from_pretrained(
        "google/gemma-2b-it",  # ベースモデル
        torch_dtype=torch.float16,
        device_map={"": 0}
    )
    tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")

    # LoRAアダプターの適用
    model = PeftModel.from_pretrained(
        model,
        "ユーザー名/リポジトリ名"
    )
    model.eval()

    # 入力データの読み込み
    tasks = []
    with open(input_jsonl_path, 'r') as f:
        for line in f:
            tasks.append(json.loads(line))

    # 出力の生成
    results = []
    for task in tqdm(tasks):
        input_text = task["input"]
        prompt = f"入力: {input_text}\n出力: "

        inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0")
        with torch.no_grad():
            outputs = model.generate(
                inputs.input_ids,
                max_length=512,
                temperature=0.7,
                do_sample=False,
                repetition_penalty=1.2
            )

        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        output_text = generated_text.split("出力: ")[-1].strip()

        results.append({
            "task_id": task["task_id"],
            "output": output_text
        })

    # 結果の保存
    with open(output_jsonl_path, 'w', encoding='utf-8') as f:
        for result in results:
            json.dump(result, f, ensure_ascii=False)
            f.write('\n')

# 使用例
input_file = "path/to/input.jsonl"
output_file = "path/to/output.jsonl"
generate_task_outputs(input_file, output_file)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for masamori/gemma-2-2b-finetuned

Base model

google/gemma-2-2b
Finetuned
(507)
this model

Dataset used to train masamori/gemma-2-2b-finetuned