pegasus_trained_SIR
This model is a fine-tuned version of google/pegasus-large on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.0036
- Train Sparse Categorical Accuracy: 0.7945
- Validation Loss: 1.1063
- Validation Sparse Categorical Accuracy: 0.7936
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
---|---|---|---|---|
1.3170 | 0.7603 | 1.1221 | 0.7874 | 0 |
1.1244 | 0.7805 | 1.1193 | 0.7913 | 1 |
1.0036 | 0.7945 | 1.1063 | 0.7936 | 2 |
Framework versions
- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.