Whisper Small German SBB all SNR
This model is a fine-tuned version of openai/whisper-small on the SBB Dataset 05.01.2023 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0274
- Wer: 0.0209
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 800
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.3449 | 0.36 | 100 | 0.2161 | 0.0380 |
0.0653 | 0.71 | 200 | 0.0265 | 0.0178 |
0.0315 | 1.07 | 300 | 0.0291 | 0.0197 |
0.0194 | 1.42 | 400 | 0.0273 | 0.0197 |
0.0141 | 1.78 | 500 | 0.0278 | 0.0197 |
0.0088 | 2.14 | 600 | 0.0265 | 0.0159 |
0.0055 | 2.49 | 700 | 0.0273 | 0.0209 |
0.0047 | 2.85 | 800 | 0.0274 | 0.0209 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.12.1
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.