distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9748
- Accuracy: {'accuracy': 0.88}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.3807 | {'accuracy': 0.879} |
0.4088 | 2.0 | 500 | 0.7833 | {'accuracy': 0.838} |
0.4088 | 3.0 | 750 | 0.6331 | {'accuracy': 0.871} |
0.2014 | 4.0 | 1000 | 0.6576 | {'accuracy': 0.88} |
0.2014 | 5.0 | 1250 | 0.7551 | {'accuracy': 0.876} |
0.0667 | 6.0 | 1500 | 0.8506 | {'accuracy': 0.876} |
0.0667 | 7.0 | 1750 | 0.8710 | {'accuracy': 0.881} |
0.0164 | 8.0 | 2000 | 0.9710 | {'accuracy': 0.88} |
0.0164 | 9.0 | 2250 | 0.9511 | {'accuracy': 0.882} |
0.0064 | 10.0 | 2500 | 0.9748 | {'accuracy': 0.88} |
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
Model tree for malithimith/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased