File size: 42,635 Bytes
e8bc872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
# This file is generated automatically through:
#    d2lbook build lib
# Don't edit it directly

# Defined in file: ./chapter_preface/index.md
import collections
from collections import defaultdict
from IPython import display
import math
from matplotlib import pyplot as plt
import os
import pandas as pd
import random
import re
import shutil
import sys
import tarfile
import time
import requests
import zipfile
import hashlib
d2l = sys.modules[__name__]


# Defined in file: ./chapter_preface/index.md
import numpy as np
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from torch.utils import data
from torchvision import transforms


# Defined in file: ./chapter_preliminaries/pandas.md
def mkdir_if_not_exist(path):  #@save
    """Make a directory if it does not exist."""
    if not isinstance(path, str):
        path = os.path.join(*path)
    if not os.path.exists(path):
        os.makedirs(path)


# Defined in file: ./chapter_preliminaries/calculus.md
def use_svg_display():  #@save
    """Use the svg format to display a plot in Jupyter."""
    display.set_matplotlib_formats('svg')


# Defined in file: ./chapter_preliminaries/calculus.md
def set_figsize(figsize=(3.5, 2.5)):  #@save
    """Set the figure size for matplotlib."""
    use_svg_display()
    d2l.plt.rcParams['figure.figsize'] = figsize


# Defined in file: ./chapter_preliminaries/calculus.md
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    """Set the axes for matplotlib."""
    axes.set_xlabel(xlabel)
    axes.set_ylabel(ylabel)
    axes.set_xscale(xscale)
    axes.set_yscale(yscale)
    axes.set_xlim(xlim)
    axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid()


# Defined in file: ./chapter_preliminaries/calculus.md
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
         ylim=None, xscale='linear', yscale='linear',
         fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
    """Plot data points."""
    if legend is None:
        legend = []

    set_figsize(figsize)
    axes = axes if axes else d2l.plt.gca()

    # Return True if `X` (tensor or list) has 1 axis
    def has_one_axis(X):
        return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
                and not hasattr(X[0], "__len__"))

    if has_one_axis(X):
        X = [X]
    if Y is None:
        X, Y = [[]] * len(X), X
    elif has_one_axis(Y):
        Y = [Y]
    if len(X) != len(Y):
        X = X * len(Y)
    axes.cla()
    for x, y, fmt in zip(X, Y, fmts):
        if len(x):
            axes.plot(x, y, fmt)
        else:
            axes.plot(y, fmt)
    set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)


# Defined in file: ./chapter_linear-networks/linear-regression.md
class Timer:  #@save
    """Record multiple running times."""
    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        """Start the timer."""
        self.tik = time.time()

    def stop(self):
        """Stop the timer and record the time in a list."""
        self.times.append(time.time() - self.tik)
        return self.times[-1]

    def avg(self):
        """Return the average time."""
        return sum(self.times) / len(self.times)

    def sum(self):
        """Return the sum of time."""
        return sum(self.times)

    def cumsum(self):
        """Return the accumulated time."""
        return np.array(self.times).cumsum().tolist()


# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
def synthetic_data(w, b, num_examples):  #@save
    """Generate y = Xw + b + noise."""
    X = d2l.normal(0, 1, (num_examples, len(w)))
    y = d2l.matmul(X, w) + b
    y += d2l.normal(0, 0.01, y.shape)
    return X, d2l.reshape(y, (-1, 1))


# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
def linreg(X, w, b):  #@save
    """The linear regression model."""
    return d2l.matmul(X, w) + b


# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
def squared_loss(y_hat, y):  #@save
    """Squared loss."""
    return (y_hat - d2l.reshape(y, y_hat.shape)) ** 2 / 2


# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
def sgd(params, lr, batch_size):  #@save
    """Minibatch stochastic gradient descent."""
    for param in params:
        param.data.sub_(lr*param.grad/batch_size)
        param.grad.data.zero_()


# Defined in file: ./chapter_linear-networks/linear-regression-concise.md
def load_array(data_arrays, batch_size, is_train=True):  #@save
    """Construct a PyTorch data iterator."""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)


# Defined in file: ./chapter_linear-networks/image-classification-dataset.md
def get_fashion_mnist_labels(labels):  #@save
    """Return text labels for the Fashion-MNIST dataset."""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


# Defined in file: ./chapter_linear-networks/image-classification-dataset.md
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        ax.imshow(d2l.numpy(img))
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes


# Defined in file: ./chapter_linear-networks/image-classification-dataset.md
def get_dataloader_workers():  #@save
    """Use 4 processes to read the data."""
    return 4


# Defined in file: ./chapter_linear-networks/image-classification-dataset.md
def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """Download the Fashion-MNIST dataset and then load it into memory."""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))


# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def accuracy(y_hat, y):  #@save
    """Compute the number of correct predictions."""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = d2l.argmax(y_hat, axis=1)        
    cmp = d2l.astype(y_hat, y.dtype) == y
    return float(d2l.reduce_sum(d2l.astype(cmp, y.dtype)))


# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def evaluate_accuracy(net, data_iter):  #@save
    """Compute the accuracy for a model on a dataset."""
    if isinstance(net, torch.nn.Module):
        net.eval()  # Set the model to evaluation mode
    metric = Accumulator(2)  # No. of correct predictions, no. of predictions
    for _, (X, y) in enumerate(data_iter):
        metric.add(accuracy(net(X), y), d2l.size(y))
    return metric[0] / metric[1]


# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
class Accumulator:  #@save
    """For accumulating sums over `n` variables."""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """The training loop defined in Chapter 3."""
    # Set the model to training mode
    if isinstance(net, torch.nn.Module):
        net.train()
    # Sum of training loss, sum of training accuracy, no. of examples
    metric = Accumulator(3)
    for X, y in train_iter:
        # Compute gradients and update parameters
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            updater.step()
            metric.add(float(l) * len(y), accuracy(y_hat, y),
                       y.size().numel())
        else:
            l.sum().backward()
            updater(X.shape[0])
            metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # Return training loss and training accuracy
    return metric[0] / metric[2], metric[1] / metric[2]


# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
class Animator:  #@save
    """For plotting data in animation."""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # Incrementally plot multiple lines
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # Use a lambda function to capture arguments
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts
        


    def add(self, x, y):
        # Add multiple data points into the figure
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)


# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """Train a model (defined in Chapter 3)."""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc


# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
def predict_ch3(net, test_iter, n=6):  #@save
    """Predict labels (defined in Chapter 3)."""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(d2l.argmax(net(X), axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(d2l.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])


# Defined in file: ./chapter_multilayer-perceptrons/underfit-overfit.md
def evaluate_loss(net, data_iter, loss):  #@save
    """Evaluate the loss of a model on the given dataset."""
    metric = d2l.Accumulator(2)  # Sum of losses, no. of examples
    for X, y in data_iter:
        l = loss(net(X), y)
        metric.add(d2l.reduce_sum(l), d2l.size(l))
    return metric[0] / metric[1]


# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
DATA_HUB = dict()  #@save
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'  #@save


# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'  #@save


# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
def download(name, cache_dir=os.path.join('..', 'data')):  #@save
    """Download a file inserted into DATA_HUB, return the local filename."""
    assert name in DATA_HUB, f"{name} does not exist in {DATA_HUB}."
    url, sha1_hash = DATA_HUB[name]
    d2l.mkdir_if_not_exist(cache_dir)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname  # Hit cache
    print(f'Downloading {fname} from {url}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname


# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
def download_extract(name, folder=None):  #@save
    """Download and extract a zip/tar file."""
    fname = download(name)
    base_dir = os.path.dirname(fname)
    data_dir, ext = os.path.splitext(fname)
    if ext == '.zip':
        fp = zipfile.ZipFile(fname, 'r')
    elif ext in ('.tar', '.gz'):
        fp = tarfile.open(fname, 'r')
    else:
        assert False, 'Only zip/tar files can be extracted.'
    fp.extractall(base_dir)
    return os.path.join(base_dir, folder) if folder else data_dir


# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
def download_all():  #@save
    """Download all files in the DATA_HUB."""
    for name in DATA_HUB:
        download(name)


# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
DATA_HUB['kaggle_house_train'] = (  #@save
    DATA_URL + 'kaggle_house_pred_train.csv',
    '585e9cc93e70b39160e7921475f9bcd7d31219ce')


# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
DATA_HUB['kaggle_house_test'] = (  #@save
    DATA_URL + 'kaggle_house_pred_test.csv',
    'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')


# Defined in file: ./chapter_deep-learning-computation/use-gpu.md
def try_gpu(i=0):  #@save
    """Return gpu(i) if exists, otherwise return cpu()."""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')


# Defined in file: ./chapter_deep-learning-computation/use-gpu.md
def try_all_gpus():  #@save
    """Return all available GPUs, or [cpu(),] if no GPU exists."""
    ctxes = [torch.device(f'cuda:{i}')
             for i in range(torch.cuda.device_count())]
    return ctxes if ctxes else [torch.device('cpu')]


# Defined in file: ./chapter_convolutional-neural-networks/conv-layer.md
def corr2d(X, K):  #@save
    """Compute 2D cross-correlation."""
    h, w = K.shape
    Y = d2l.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = d2l.reduce_sum((X[i: i + h, j: j + w] * K))
    return Y


# Defined in file: ./chapter_convolutional-neural-networks/lenet.md
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    net.eval()  # Set the model to evaluation mode
    if not device:
        device = next(iter(net.parameters())).device
    metric = d2l.Accumulator(2)  # num_corrected_examples, num_examples
    for X, y in data_iter:
        X, y = X.to(device), y.to(device)
        metric.add(d2l.accuracy(net(X), y), d2l.size(y))
    return metric[0] / metric[1]


# Defined in file: ./chapter_convolutional-neural-networks/lenet.md
def train_ch6(net, train_iter, test_iter, num_epochs, lr,
              device=d2l.try_gpu()):
    """Train and evaluate a model with CPU or GPU."""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            torch.nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer = d2l.Timer()
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)  # train_loss, train_acc, num_examples
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            net.train()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l*X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_loss, train_acc = metric[0]/metric[2], metric[1]/metric[2]
            if (i+1) % 50 == 0:
                animator.add(epoch + i/len(train_iter),
                             (train_loss, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch+1, (None, None, test_acc))
    print(f'loss {train_loss:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')


# Defined in file: ./chapter_convolutional-modern/resnet.md
class Residual(nn.Module):  #@save
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)


# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt',
                                '090b5e7e70c295757f55df93cb0a180b9691891a')


# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
def read_time_machine():  #@save
    """Load the time machine book into a list of sentences."""
    with open(d2l.download('time_machine'), 'r') as f:
        lines = f.readlines()
    return [re.sub('[^A-Za-z]+', ' ', line.strip().lower())
            for line in lines]


# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
def tokenize(lines, token='word'):  #@save
    """Split sentences into word or char tokens."""
    if token == 'word':
        return [line.split(' ') for line in lines]
    elif token == 'char':
        return [list(line) for line in lines]
    else:
        print('ERROR: unknown token type '+token)


# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
class Vocab:  #@save
    def __init__(self, tokens, min_freq=0, reserved_tokens=None):
        if reserved_tokens is None:
            reserved_tokens = []
        # Sort according to frequencies
        counter = count_corpus(tokens)
        self.token_freqs = sorted(counter.items(), key=lambda x: x[0])
        self.token_freqs.sort(key=lambda x: x[1], reverse=True)
        self.unk, uniq_tokens = 0, ['<unk>'] + reserved_tokens
        uniq_tokens += [token for token, freq in self.token_freqs
                        if freq >= min_freq and token not in uniq_tokens]
        self.idx_to_token, self.token_to_idx = [], dict()
        for token in uniq_tokens:
            self.idx_to_token.append(token)
            self.token_to_idx[token] = len(self.idx_to_token) - 1

    def __len__(self):
        return len(self.idx_to_token)

    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]


# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
def count_corpus(sentences):  #@save
    # Flatten a list of token lists into a list of tokens
    tokens = [tk for line in sentences for tk in line]
    return collections.Counter(tokens)


# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
def load_corpus_time_machine(max_tokens=-1):  #@save
    lines = read_time_machine()
    tokens = tokenize(lines, 'char')
    vocab = Vocab(tokens)
    corpus = [vocab[tk] for line in tokens for tk in line]
    if max_tokens > 0:
        corpus = corpus[:max_tokens]
    return corpus, vocab


# Defined in file: ./chapter_recurrent-neural-networks/language-models-and-dataset.md
def seq_data_iter_random(corpus, batch_size, num_steps):  #@save
    # Offset the iterator over the data for uniform starts
    corpus = corpus[random.randint(0, num_steps):]
    # Subtract 1 extra since we need to account for label
    num_examples = ((len(corpus) - 1) // num_steps)
    example_indices = list(range(0, num_examples * num_steps, num_steps))
    random.shuffle(example_indices)

    def data(pos):
        # This returns a sequence of length `num_steps` starting from `pos`
        return corpus[pos: pos + num_steps]

    # Discard half empty batches
    num_batches = num_examples // batch_size
    for i in range(0, batch_size * num_batches, batch_size):
        # `batch_size` indicates the random examples read each time
        batch_indices = example_indices[i:(i+batch_size)]
        X = [data(j) for j in batch_indices]
        Y = [data(j + 1) for j in batch_indices]
        yield d2l.tensor(X), d2l.tensor(Y)


# Defined in file: ./chapter_recurrent-neural-networks/language-models-and-dataset.md
def seq_data_iter_consecutive(corpus, batch_size, num_steps):  #@save
    # Offset for the iterator over the data for uniform starts
    offset = random.randint(0, num_steps)
    # Slice out data: ignore `num_steps` and just wrap around
    num_indices = ((len(corpus) - offset - 1) // batch_size) * batch_size
    Xs = d2l.tensor(corpus[offset:offset+num_indices])
    Ys = d2l.tensor(corpus[offset+1:offset+1+num_indices])
    Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
    num_batches = Xs.shape[1] // num_steps
    for i in range(0, num_batches * num_steps, num_steps):
        X = Xs[:, i:(i+num_steps)]
        Y = Ys[:, i:(i+num_steps)]
        yield X, Y


# Defined in file: ./chapter_recurrent-neural-networks/language-models-and-dataset.md
class SeqDataLoader:  #@save
    """A iterator to load sequence data."""
    def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):
        if use_random_iter:
            self.data_iter_fn = d2l.seq_data_iter_random
        else:
            self.data_iter_fn = d2l.seq_data_iter_consecutive
        self.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens)
        self.batch_size, self.num_steps = batch_size, num_steps

    def __iter__(self):
        return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)


# Defined in file: ./chapter_recurrent-neural-networks/language-models-and-dataset.md
def load_data_time_machine(batch_size, num_steps,  #@save
                           use_random_iter=False, max_tokens=10000):
    data_iter = SeqDataLoader(
        batch_size, num_steps, use_random_iter, max_tokens)
    return data_iter, data_iter.vocab


# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
class RNNModelScratch: #@save
    """A RNN Model based on scratch implementations."""
    def __init__(self, vocab_size, num_hiddens, device,
                 get_params, init_state, forward):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward

    def __call__(self, X, state):
        X = F.one_hot(X.T.long(), self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, device):
        return self.init_state(batch_size, self.num_hiddens, device)


# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
def predict_ch8(prefix, num_predicts, model, vocab, device):  #@save
    state = model.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape(1, 1)
    for y in prefix[1:]:  # Warmup state with prefix
        _, state = model(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_predicts):  # Predict num_predicts steps
        Y, state = model(get_input(), state)
        outputs.append(int(Y.argmax(dim=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])


# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
def grad_clipping(model, theta):  #@save
    if isinstance(model, nn.Module):
        params = [p for p in model.parameters() if p.requires_grad]
    else:
        params = model.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm


# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
def train_epoch_ch8(model, train_iter, loss, updater, device, use_random_iter):  #@save
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # loss_sum, num_examples
    for X, Y in train_iter:
        if state is None or use_random_iter:
            # Initialize state when either it is the first iteration or
            # using random sampling.
            state = model.begin_state(batch_size=X.shape[0], device=device)
        else:
            for s in state:
                s.detach_()
        y = Y.T.reshape(-1)
        X, y = X.to(device), y.to(device)
        py, state = model(X, state)
        l = loss(py, y.long()).mean()
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(model, 1)
            updater.step()
        else:
            l.backward()
            grad_clipping(model, 1)
            updater(batch_size=1)  # Since used mean already
        metric.add(l * d2l.size(y), d2l.size(y))
    return math.exp(metric[0]/metric[1]), metric[1]/timer.stop()


# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
def train_ch8(model, train_iter, vocab, lr, num_epochs, device,
              use_random_iter=False):
    # Initialize
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[1, num_epochs])
    if isinstance(model, nn.Module):
        trainer = torch.optim.SGD(model.parameters(), lr)
        updater = lambda batch_size: trainer.step()
    else:
        updater = lambda batch_size: d2l.sgd(model.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, model, vocab, device)
    # Train and check the progress.
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(
            model, train_iter, loss, updater, device, use_random_iter)
        if epoch % 10 == 0:
            print(predict('time traveller'))
            animator.add(epoch+1, [ppl])
    print(f'perplexity {ppl:.1f}, {speed:.1f} tokens/sec on {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))


# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip',
                           '94646ad1522d915e7b0f9296181140edcf86a4f5')


# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
def read_data_nmt():
    data_dir = d2l.download_extract('fra-eng')
    with open(os.path.join(data_dir, 'fra.txt'), 'r') as f:
        return f.read()


# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
def preprocess_nmt(text):
    def no_space(char, prev_char):
        return char in set(',.!') and prev_char != ' '

    text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
    out = [' ' + char if i > 0 and no_space(char, text[i-1]) else char
           for i, char in enumerate(text)]
    return ''.join(out)


# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
def tokenize_nmt(text, num_examples=None):
    source, target = [], []
    for i, line in enumerate(text.split('\n')):
        if num_examples and i > num_examples:
            break
        parts = line.split('\t')
        if len(parts) == 2:
            source.append(parts[0].split(' '))
            target.append(parts[1].split(' '))
    return source, target


# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
def truncate_pad(line, num_steps, padding_token):
    if len(line) > num_steps:
        return line[:num_steps]  # Trim
    return line + [padding_token] * (num_steps - len(line))  # Pad


# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
def build_array(lines, vocab, num_steps, is_source):
    lines = [vocab[l] for l in lines]
    if not is_source:
        lines = [[vocab['<bos>']] + l + [vocab['<eos>']] for l in lines]
    array = torch.tensor([truncate_pad(
        l, num_steps, vocab['<pad>']) for l in lines])
    valid_len = (array != vocab['<pad>']).sum(dim=1)
    return array, valid_len


# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
def load_data_nmt(batch_size, num_steps, num_examples=1000):
    text = preprocess_nmt(read_data_nmt())
    source, target = tokenize_nmt(text, num_examples)
    src_vocab = d2l.Vocab(source, min_freq=3, 
                          reserved_tokens=['<pad>', '<bos>', '<eos>'])
    tgt_vocab = d2l.Vocab(target, min_freq=3, 
                          reserved_tokens=['<pad>', '<bos>', '<eos>'])
    src_array, src_valid_len = build_array(
        source, src_vocab, num_steps, True)
    tgt_array, tgt_valid_len = build_array(
        target, tgt_vocab, num_steps, False)
    data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
    data_iter = d2l.load_array(data_arrays, batch_size)
    return src_vocab, tgt_vocab, data_iter


# Defined in file: ./chapter_recurrent-modern/encoder-decoder.md
class Encoder(nn.Module):
    """The base encoder interface for the encoder-decoder architecture."""
    def __init__(self, **kwargs):
        super(Encoder, self).__init__(**kwargs)

    def forward(self, X, *args):
        raise NotImplementedError


# Defined in file: ./chapter_recurrent-modern/encoder-decoder.md
class Decoder(nn.Module):
    """The base decoder interface for the encoder-decoder architecture."""
    def __init__(self, **kwargs):
        super(Decoder, self).__init__(**kwargs)

    def init_state(self, enc_outputs, *args):
        raise NotImplementedError

    def forward(self, X, state):
        raise NotImplementedError


# Defined in file: ./chapter_recurrent-modern/encoder-decoder.md
class EncoderDecoder(nn.Module):
    """The base class for the encoder-decoder architecture."""
    def __init__(self, encoder, decoder, **kwargs):
        super(EncoderDecoder, self).__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, enc_X, dec_X, *args):
        enc_outputs = self.encoder(enc_X, *args)
        dec_state = self.decoder.init_state(enc_outputs, *args)
        return self.decoder(dec_X, dec_state)


# Defined in file: ./chapter_recurrent-modern/seq2seq.md
class Seq2SeqEncoder(d2l.Encoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 dropout=0, **kwargs):
        super(Seq2SeqEncoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.LSTM(embed_size, num_hiddens, num_layers, dropout=dropout)

    def forward(self, X, *args):
        X = self.embedding(X)  # X shape: (batch_size, seq_len, embed_size)
        # RNN needs first axes to be timestep, i.e., seq_len
        X = X.permute(1, 0, 2)
        out, state = self.rnn(X) # When state is not mentioned, it defaults to zeros
        # out shape: (seq_len, batch_size, num_hiddens)
        # state shape: (num_layers, batch_size, num_hiddens),
        # where "state" contains the hidden state and the memory cell
        return out, state


# Defined in file: ./chapter_recurrent-modern/seq2seq.md
class Seq2SeqDecoder(d2l.Decoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 dropout=0, **kwargs):
        super(Seq2SeqDecoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.LSTM(embed_size, num_hiddens, num_layers, dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)

    def init_state(self, enc_outputs, *args):
        return enc_outputs[1]

    def forward(self, X, state):
        X = self.embedding(X).permute(1, 0, 2)
        out, state = self.rnn(X, state)
        # Make the batch to be the first dimension to simplify loss computation
        out = self.dense(out).permute(1, 0, 2)
        return out, state


# Defined in file: ./chapter_recurrent-modern/seq2seq.md
def sequence_mask(X, valid_len, value=0):
    output = X.clone()
    for count, matrix in enumerate(output):
        matrix[int(valid_len[count]):]=value
    return output


# Defined in file: ./chapter_recurrent-modern/seq2seq.md
class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
    # pred shape: (batch_size, seq_len, vocab_size)
    # label shape: (batch_size, seq_len)
    # valid_len shape: (batch_size, )
    def forward(self, pred, label, valid_len):
        weights = torch.ones_like(label)
        weights = sequence_mask(weights, valid_len)
        self.reduction='none'
        unweighted_loss = super(MaskedSoftmaxCELoss, self).forward(pred.permute(0,2,1), label)
        weighted_loss = (unweighted_loss*weights).mean(dim=1)
        return weighted_loss


# Defined in file: ./chapter_recurrent-modern/seq2seq.md
def train_s2s_ch9(model, data_iter, lr, num_epochs, device):
    def xavier_init_weights(m):
        if type(m) == nn.Linear:
            torch.nn.init.xavier_uniform_(m.weight)
        if type(m) == nn.LSTM:
            for param in m._flat_weights_names:
                if "weight" in param:
                    torch.nn.init.xavier_uniform_(m._parameters[param])
    model.apply(xavier_init_weights)
    model.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    loss = MaskedSoftmaxCELoss()
    model.train()
    animator = d2l.Animator(xlabel='epoch', ylabel='loss',
                            xlim=[1, num_epochs], ylim=[0, 0.25])
    for epoch in range(1, num_epochs + 1):
        timer = d2l.Timer()
        metric = d2l.Accumulator(2)  # loss_sum, num_tokens
        for batch in data_iter:
            X, X_vlen, Y, Y_vlen = [x.to(device) for x in batch]
            Y_input, Y_label, Y_vlen = Y[:, :-1], Y[:, 1:], Y_vlen-1
            Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen)
            l = loss(Y_hat, Y_label, Y_vlen)
            l.sum().backward() # Making the loss scalar for backward()
            d2l.grad_clipping(model, 1)
            num_tokens = Y_vlen.sum()
            optimizer.step()
            with torch.no_grad():
                metric.add(l.sum(), num_tokens)
        if epoch % 10 == 0:
            animator.add(epoch, (metric[0]/metric[1],))
    print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} '
          f'tokens/sec on {str(device)}')


# Defined in file: ./chapter_recurrent-modern/seq2seq.md
def predict_s2s_ch9(model, src_sentence, src_vocab, tgt_vocab, num_steps,
                    device):
    src_tokens = src_vocab[src_sentence.lower().split(' ')]
    enc_valid_len = torch.tensor([len(src_tokens)], device=device)
    src_tokens = d2l.truncate_pad(src_tokens, num_steps, src_vocab['<pad>'])
    enc_X = torch.tensor(src_tokens, dtype=torch.long, device=device)
    # Add the  batch size dimension
    enc_outputs = model.encoder(torch.unsqueeze(enc_X, dim=0),
                                enc_valid_len)
    dec_state = model.decoder.init_state(enc_outputs, enc_valid_len)
    dec_X = torch.unsqueeze(torch.tensor([tgt_vocab['<bos>']], dtype=torch.long, device=device), dim=0)
    predict_tokens = []
    for _ in range(num_steps):
        Y, dec_state = model.decoder(dec_X, dec_state)
        # The token with highest score is used as the next timestep input
        dec_X = Y.argmax(dim=2)
        py = dec_X.squeeze(dim=0).type(torch.int32).item()
        if py == tgt_vocab['<eos>']:
            break
        predict_tokens.append(py)
    return ' '.join(tgt_vocab.to_tokens(predict_tokens))


# Defined in file: ./chapter_attention-mechanisms/attention.md
def masked_softmax(X, valid_len):
    """Perform softmax by filtering out some elements."""
    # X: 3-D tensor, valid_len: 1-D or 2-D tensor
    if valid_len is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        shape = X.shape
        if valid_len.dim() == 1:
            valid_len = torch.repeat_interleave(valid_len, repeats=shape[1],
                                                dim=0)
        else:
            valid_len = valid_len.reshape(-1)
        # Fill masked elements with a large negative, whose exp is 0
        X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_len, value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)


# Defined in file: ./chapter_attention-mechanisms/attention.md
class DotProductAttention(nn.Module):
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # `query`: (`batch_size`, #queries, `d`)
    # `key`: (`batch_size`, #kv_pairs, `d`)
    # `value`: (`batch_size`, #kv_pairs, `dim_v`)
    # `valid_len`: either (`batch_size`, ) or (`batch_size`, xx)
    def forward(self, query, key, value, valid_len=None):
        d = query.shape[-1]
        # Set transpose_b=True to swap the last two dimensions of key
        scores = torch.bmm(query, key.transpose(1,2)) / math.sqrt(d)
        attention_weights = self.dropout(masked_softmax(scores, valid_len))
        return torch.bmm(attention_weights, value)


# Defined in file: ./chapter_attention-mechanisms/attention.md
class MLPAttention(nn.Module):
    def __init__(self, key_size, query_size, units, dropout, **kwargs):
        super(MLPAttention, self).__init__(**kwargs)
        self.W_k = nn.Linear(key_size, units, bias=False)
        self.W_q = nn.Linear(query_size, units, bias=False)
        self.v = nn.Linear(units, 1, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, query, key, value, valid_len):
        query, key = self.W_k(query), self.W_q(key)
        # Expand query to (`batch_size`, #queries, 1, units), and key to
        # (`batch_size`, 1, #kv_pairs, units). Then plus them with broadcast
        features = query.unsqueeze(2) + key.unsqueeze(1)
        scores = self.v(features).squeeze(-1)
        attention_weights = self.dropout(masked_softmax(scores, valid_len))
        return torch.bmm(attention_weights, value)


# Defined in file: ./chapter_optimization/optimization-intro.md
def annotate(text, xy, xytext):  #@save
    d2l.plt.gca().annotate(text, xy=xy, xytext=xytext,
                           arrowprops=dict(arrowstyle='->'))


# Defined in file: ./chapter_optimization/gd.md
def train_2d(trainer, steps=20):  #@save
    """Optimize a 2-dim objective function with a customized trainer."""
    # s1 and s2 are internal state variables and will
    # be used later in the chapter
    x1, x2, s1, s2 = -5, -2, 0, 0
    results = [(x1, x2)]
    for i in range(steps):
        x1, x2, s1, s2 = trainer(x1, x2, s1, s2)
        results.append((x1, x2))
    return results


# Defined in file: ./chapter_optimization/gd.md
def show_trace_2d(f, results):  #@save
    """Show the trace of 2D variables during optimization."""
    d2l.set_figsize()
    d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e')
    x1, x2 = d2l.meshgrid(d2l.arange(-5.5, 1.0, 0.1),
                          d2l.arange(-3.0, 1.0, 0.1))
    d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4')
    d2l.plt.xlabel('x1')
    d2l.plt.ylabel('x2')


# Alias defined in config.ini


ones = torch.ones
zeros = torch.zeros
tensor = torch.tensor
arange = torch.arange
meshgrid = torch.meshgrid
sin = torch.sin
sinh = torch.sinh
cos = torch.cos
cosh = torch.cosh
tanh = torch.tanh
linspace = torch.linspace
exp = torch.exp
log = torch.log
normal = torch.normal
matmul = torch.matmul
int32 = torch.int32
float32 = torch.float32
concat = torch.cat
stack = torch.stack
abs = torch.abs
numpy = lambda x, *args, **kwargs: x.detach().numpy(*args, **kwargs)
size = lambda x, *args, **kwargs: x.numel(*args, **kwargs)
reshape = lambda x, *args, **kwargs: x.reshape(*args, **kwargs)
to = lambda x, *args, **kwargs: x.to(*args, **kwargs)
reduce_sum = lambda x, *args, **kwargs: x.sum(*args, **kwargs)
argmax = lambda x, *args, **kwargs: x.argmax(*args, **kwargs)
astype = lambda x, *args, **kwargs: x.type(*args, **kwargs)
transpose = lambda x, *args, **kwargs: x.t(*args, **kwargs)