Model, parameters and utils for evaluating.
Browse files- current_best_acc.pt +3 -0
- main.py +267 -0
- my_utils.py +1111 -0
current_best_acc.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0481c84e636c920f346d01cf25dc191ca8d23e0b0944e87a83197b0389dffe68
|
3 |
+
size 6185383
|
main.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %matplotlib inline
|
2 |
+
# optuna-dashboard sqlite:///db.sqlite3
|
3 |
+
# https://github.com/optuna/optuna-dashboard
|
4 |
+
|
5 |
+
import optuna # Used for the hyperparameter tuning, because cba anymore to do in any other way.
|
6 |
+
import gc
|
7 |
+
import torch
|
8 |
+
from torch.utils import data
|
9 |
+
import torchvision.datasets as datasets
|
10 |
+
from torchvision import transforms
|
11 |
+
from torch import nn
|
12 |
+
import random
|
13 |
+
import my_utils as mu
|
14 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
train_trans = transforms.Compose([
|
19 |
+
# add transformations, and data augmentation, to increase batch size and increase generalization.
|
20 |
+
# transforms.FiveCrop(size=(32,32)), # might remove this.
|
21 |
+
transforms.RandomPerspective(distortion_scale=0.6, p=0.4),
|
22 |
+
transforms.GaussianBlur(kernel_size=(5, 11), sigma=(0.1, 0.2)),
|
23 |
+
transforms.RandomRotation(degrees=(-8, 8)),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
# transforms.Normalize((0.49139968, 0.48215827 ,0.44653124), (0.24703233, 0.24348505, 0.26158768))
|
26 |
+
])
|
27 |
+
|
28 |
+
test_trans = transforms.Compose([
|
29 |
+
# This is all we need for the normalization of the model.
|
30 |
+
transforms.ToTensor(),
|
31 |
+
# transforms.Normalize((0.49139968, 0.48215827, 0.44653124), (0.24703233, 0.24348505, 0.26158768))
|
32 |
+
])
|
33 |
+
|
34 |
+
|
35 |
+
# Required for data to be in Tensor form not PIL Image
|
36 |
+
trans = [transforms.ToTensor()]
|
37 |
+
trans = transforms.Compose(trans)
|
38 |
+
|
39 |
+
cifar_trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_trans)
|
40 |
+
cifar_testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=test_trans)
|
41 |
+
# 60,000 32x32 color images in 10 different classes
|
42 |
+
|
43 |
+
# batch_size = 15
|
44 |
+
# data_iter = data.DataLoader(cifar_trainset, batch_size, shuffle=True)
|
45 |
+
# test_iter = data.DataLoader(cifar_testset, batch_size, shuffle=True)
|
46 |
+
|
47 |
+
print("Read dataset and create dataloaders - 5%")
|
48 |
+
|
49 |
+
|
50 |
+
def SpatialAveragePool(X):
|
51 |
+
return torch.mean(X, dim=[2,3])
|
52 |
+
|
53 |
+
|
54 |
+
def init_weights(m):
|
55 |
+
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
56 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
57 |
+
|
58 |
+
|
59 |
+
loss = nn.CrossEntropyLoss()
|
60 |
+
|
61 |
+
|
62 |
+
class MakiNet(nn.Module):
|
63 |
+
def __init__(self, conv_arch, num_classes, dropout_rate=0.0001): # conv_arch:
|
64 |
+
super(MakiNet, self).__init__()
|
65 |
+
self.out_classes = num_classes
|
66 |
+
self.conv_arch = conv_arch
|
67 |
+
k= 0
|
68 |
+
for i, (num_conv, in_channels, out_channels) in enumerate(conv_arch):
|
69 |
+
self.add_module(f"maki_block{i}", MakiBlock(num_conv, in_channels, out_channels, dropout_rate))
|
70 |
+
# input_channels = out_channels
|
71 |
+
# k = out_channels * (32-(2*len(conv_arch))) * (32-(2*len(conv_arch)))
|
72 |
+
k = out_channels
|
73 |
+
print(str(k) + " parameters")
|
74 |
+
|
75 |
+
self.classifier = nn.Sequential(
|
76 |
+
nn.Flatten(),
|
77 |
+
nn.Linear(k, 75),
|
78 |
+
nn.Dropout(p=dropout_rate),
|
79 |
+
nn.ReLU(),
|
80 |
+
nn.Linear(75, 25),
|
81 |
+
nn.Dropout(p=dropout_rate),
|
82 |
+
nn.ReLU(),
|
83 |
+
nn.Linear(25, num_classes)
|
84 |
+
)
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
out = x
|
88 |
+
# print(f"number of blocks: {len(self.conv_arch)}")
|
89 |
+
for i in range(len(self.conv_arch)):
|
90 |
+
out = self._modules[f"maki_block{i}"](out)
|
91 |
+
out = SpatialAveragePool(out)
|
92 |
+
out = self.classifier(out)
|
93 |
+
return out
|
94 |
+
|
95 |
+
|
96 |
+
class MakiBlock(nn.Module):
|
97 |
+
def __init__(self, num_conv, input_channels, output_channels, dropout_rate):
|
98 |
+
super(MakiBlock, self).__init__()
|
99 |
+
self.num_convs = num_conv
|
100 |
+
self.linear = nn.Linear(input_channels, num_conv, bias=False)
|
101 |
+
self.relu = nn.ReLU()
|
102 |
+
#self.max = nn.MaxPool2d(kernel_size=3, padding=1, stride=1)
|
103 |
+
#self.avg = nn.AvgPool2d(kernel_size=3, padding=1, stride=1)
|
104 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
105 |
+
|
106 |
+
for i in range(num_conv):
|
107 |
+
# add convolution layer
|
108 |
+
self.add_module(f"conv{i}", nn.Conv2d(input_channels, output_channels, kernel_size=5, padding=1, stride=1))
|
109 |
+
# add batch norm layer
|
110 |
+
self.add_module(f"batch_norm{i}", nn.BatchNorm2d(output_channels))
|
111 |
+
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
# apply the linear model x, to a number of outputs.
|
115 |
+
x = x.to(device)
|
116 |
+
# Initial MLP part.
|
117 |
+
avg_out = SpatialAveragePool(x)
|
118 |
+
avg_out = avg_out.to(device)
|
119 |
+
|
120 |
+
lin_out = self.linear(avg_out)
|
121 |
+
lin_out - self.dropout(lin_out)
|
122 |
+
|
123 |
+
a = self.relu(lin_out) # a vector.
|
124 |
+
|
125 |
+
|
126 |
+
total_output = []
|
127 |
+
for j in range(self.num_convs):
|
128 |
+
|
129 |
+
out = self._modules[f"conv{j}"](x)
|
130 |
+
out = self._modules[f"batch_norm{j}"](out)
|
131 |
+
out = self.dropout(out)
|
132 |
+
out = self.relu(out)
|
133 |
+
# out = self.max(out) # removing it, as shown ineffective.
|
134 |
+
s = a[:, j].unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) * out
|
135 |
+
total_output.append(s)
|
136 |
+
|
137 |
+
total_output = torch.stack(total_output, dim=0)
|
138 |
+
out = torch.sum(total_output, dim=0)
|
139 |
+
return torch.Tensor(out)
|
140 |
+
|
141 |
+
print("Create the model - 40%")
|
142 |
+
|
143 |
+
|
144 |
+
# def train_model(net, train_iter, test_iter, num_epochs, lr, wd=1e-9, device=device, param_dict=None):
|
145 |
+
def train_model(trail, study, device=device):
|
146 |
+
gc.collect()
|
147 |
+
torch.cuda.empty_cache()
|
148 |
+
gpu_memory = torch.cuda.memory_allocated(device='cuda:0')
|
149 |
+
print(f"GPU memory allocated: {gpu_memory}")
|
150 |
+
# To be completed.
|
151 |
+
try:
|
152 |
+
batch_size = trail.suggest_int("batch_size", 32, 256)
|
153 |
+
train_iter = data.DataLoader(cifar_trainset, batch_size, shuffle=True)
|
154 |
+
test_iter = data.DataLoader(cifar_testset, batch_size, shuffle=True)
|
155 |
+
|
156 |
+
# dropout_rate = trail.suggest_float("dropout_rate", 1e-5, 1e-1, log=True)
|
157 |
+
dropout_rate = 0.15
|
158 |
+
|
159 |
+
#number_of_layers = trail.suggest_int("number_of_layers", 3, 8)
|
160 |
+
#number_of_channels = trail.suggest_int("number_of_channels", 50, 200)
|
161 |
+
# number_of_layers = 4
|
162 |
+
# number_of_channels = 10
|
163 |
+
|
164 |
+
# num_conv = trail.suggest_int(3, 5) # 3, try 12 next after this.
|
165 |
+
num_conv = 3
|
166 |
+
#model_arch = [
|
167 |
+
# [num_conv, 3, number_of_channels], # num_conv, in_channels, out_channels
|
168 |
+
#]
|
169 |
+
#for i in range(number_of_layers):
|
170 |
+
# model_arch.append([num_conv, number_of_channels, number_of_channels])
|
171 |
+
|
172 |
+
model_arch = [
|
173 |
+
[3, 3, 120], # num_conv, in_channels, out_channels
|
174 |
+
[3, 120, 100],
|
175 |
+
[3, 100, 80],
|
176 |
+
]
|
177 |
+
net = MakiNet(model_arch, 10, dropout_rate=dropout_rate)
|
178 |
+
net.to(device)
|
179 |
+
#state_dict = torch.load(f"optuna_coursework_multi_arch_hyper_maki_net_4_10_0.713.params")
|
180 |
+
#net.load_state_dict(state_dict)
|
181 |
+
net.apply(init_weights)
|
182 |
+
|
183 |
+
lr = trail.suggest_float("lr", 1e-5, 9e-1, log=True)
|
184 |
+
# wd = trail.suggest_float("wd", 1e-9, 1e-1, log=True)
|
185 |
+
wd=0
|
186 |
+
optimizer = torch.optim.SGD(net.parameters(), lr=lr, weight_decay=wd)
|
187 |
+
loss = nn.CrossEntropyLoss()
|
188 |
+
timer = mu.Timer()
|
189 |
+
|
190 |
+
num_epochs = trail.suggest_int("num_epochs", 20, 50) # 10, 40
|
191 |
+
|
192 |
+
metric = mu.Accumulator(3) # train_loss, train_acc, num_examples
|
193 |
+
train_loss = 0
|
194 |
+
train_acc = 0
|
195 |
+
for epoch in range(num_epochs):
|
196 |
+
print(f"Epoch: {epoch}/ {num_epochs}")
|
197 |
+
for i, (X, y) in enumerate(train_iter):
|
198 |
+
timer.start()
|
199 |
+
net.train()
|
200 |
+
optimizer.zero_grad()
|
201 |
+
X, y = X.to(device), y.to(device)
|
202 |
+
y_hat = net(X)
|
203 |
+
l = loss(y_hat, y)
|
204 |
+
l.backward()
|
205 |
+
optimizer.step()
|
206 |
+
with torch.no_grad():
|
207 |
+
metric.add(l*X.shape[0], mu.accuracy(y_hat, y), X.shape[0])
|
208 |
+
timer.stop()
|
209 |
+
train_loss, train_acc = metric[0]/metric[2], metric[1]/metric[2]
|
210 |
+
if (i+1) % 50 == 0:
|
211 |
+
print(f'batch {i+1}, train loss {train_loss:.3f}, train acc {train_acc:.3f}')
|
212 |
+
test_acc = mu.evaluate_accuracy_gpu(net, test_iter)
|
213 |
+
print(f'Test Accuracy for epoch {epoch+1} is {test_acc:.3f}')
|
214 |
+
|
215 |
+
if epoch == 5 and test_acc <= 0.1:
|
216 |
+
# # Stop the trial if the test accuracy is less than 0.1 after 10 epochs. To save time.
|
217 |
+
raise optuna.exceptions.TrialPruned()
|
218 |
+
|
219 |
+
test_acc = mu.evaluate_accuracy_gpu(net, test_iter)
|
220 |
+
test_acc_delta = test_acc - train_acc
|
221 |
+
if test_acc_delta < -0.25:
|
222 |
+
# overfitting of more than 25%, prune.
|
223 |
+
raise optuna.exceptions.TrialPruned()
|
224 |
+
|
225 |
+
try:
|
226 |
+
if test_acc > study.best_trials[0].values[0]:
|
227 |
+
torch.save(net.state_dict(), f"attempt6{test_acc:.3f}.params")
|
228 |
+
except IndexError:
|
229 |
+
print("No best trial yet.")
|
230 |
+
torch.save(net.state_dict(), f"attempt6{test_acc:.3f}.params")
|
231 |
+
except Exception as e:
|
232 |
+
print("Exception occurred")
|
233 |
+
return optuna.exceptions.OptunaError(f"Exception occurred during training. {e}")
|
234 |
+
return test_acc # , train_loss, test_acc_delta
|
235 |
+
|
236 |
+
|
237 |
+
if __name__ == "__main__":
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
# model_arch = [
|
242 |
+
# [6, 3, 12], # num_conv, in_channels, out_channels max 73% no aug
|
243 |
+
# [4, 12, 15],
|
244 |
+
# [4, 15, 12],
|
245 |
+
# [5, 12, 9],
|
246 |
+
# ]
|
247 |
+
#
|
248 |
+
# model_arch2 = [
|
249 |
+
# [3, 3, 5], # num_conv, in_channels, out_channels
|
250 |
+
# [3, 5, 6],
|
251 |
+
# [3, 6, 3],
|
252 |
+
# # [2, 6, 3]
|
253 |
+
# ]
|
254 |
+
|
255 |
+
#study = optuna.create_study(study_name="attempt6", storage="sqlite:///db.sqlite3", directions=["maximize"]) # maximise the test accuracy.
|
256 |
+
study = optuna.load_study(study_name="attempt6", storage="sqlite:///db.sqlite3")
|
257 |
+
# print(f"Study Attributes: {study.user_attrs}")
|
258 |
+
#print(f"{study.best_trials[0].values[0]} - {study.best_trials[0].params}")
|
259 |
+
|
260 |
+
study.optimize(lambda trial: train_model(trial, study, device), n_trials=1000) # 2 hours.
|
261 |
+
|
262 |
+
# All task runs up to run 25, are with transformer simple model, not with data augmentation.
|
263 |
+
|
264 |
+
# optuna-dashboard sqlite:///db.sqlite3
|
265 |
+
|
266 |
+
|
267 |
+
# test_acc, train_loss, test_acc_delta
|
my_utils.py
ADDED
@@ -0,0 +1,1111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is generated automatically through:
|
2 |
+
# d2lbook build lib
|
3 |
+
# Don't edit it directly
|
4 |
+
|
5 |
+
# Defined in file: ./chapter_preface/index.md
|
6 |
+
import collections
|
7 |
+
from collections import defaultdict
|
8 |
+
from IPython import display
|
9 |
+
import math
|
10 |
+
from matplotlib import pyplot as plt
|
11 |
+
import os
|
12 |
+
import pandas as pd
|
13 |
+
import random
|
14 |
+
import re
|
15 |
+
import shutil
|
16 |
+
import sys
|
17 |
+
import tarfile
|
18 |
+
import time
|
19 |
+
import requests
|
20 |
+
import zipfile
|
21 |
+
import hashlib
|
22 |
+
d2l = sys.modules[__name__]
|
23 |
+
|
24 |
+
|
25 |
+
# Defined in file: ./chapter_preface/index.md
|
26 |
+
import numpy as np
|
27 |
+
import torch
|
28 |
+
import torchvision
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import functional as F
|
31 |
+
from torch.utils import data
|
32 |
+
from torchvision import transforms
|
33 |
+
|
34 |
+
|
35 |
+
# Defined in file: ./chapter_preliminaries/pandas.md
|
36 |
+
def mkdir_if_not_exist(path): #@save
|
37 |
+
"""Make a directory if it does not exist."""
|
38 |
+
if not isinstance(path, str):
|
39 |
+
path = os.path.join(*path)
|
40 |
+
if not os.path.exists(path):
|
41 |
+
os.makedirs(path)
|
42 |
+
|
43 |
+
|
44 |
+
# Defined in file: ./chapter_preliminaries/calculus.md
|
45 |
+
def use_svg_display(): #@save
|
46 |
+
"""Use the svg format to display a plot in Jupyter."""
|
47 |
+
display.set_matplotlib_formats('svg')
|
48 |
+
|
49 |
+
|
50 |
+
# Defined in file: ./chapter_preliminaries/calculus.md
|
51 |
+
def set_figsize(figsize=(3.5, 2.5)): #@save
|
52 |
+
"""Set the figure size for matplotlib."""
|
53 |
+
use_svg_display()
|
54 |
+
d2l.plt.rcParams['figure.figsize'] = figsize
|
55 |
+
|
56 |
+
|
57 |
+
# Defined in file: ./chapter_preliminaries/calculus.md
|
58 |
+
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
|
59 |
+
"""Set the axes for matplotlib."""
|
60 |
+
axes.set_xlabel(xlabel)
|
61 |
+
axes.set_ylabel(ylabel)
|
62 |
+
axes.set_xscale(xscale)
|
63 |
+
axes.set_yscale(yscale)
|
64 |
+
axes.set_xlim(xlim)
|
65 |
+
axes.set_ylim(ylim)
|
66 |
+
if legend:
|
67 |
+
axes.legend(legend)
|
68 |
+
axes.grid()
|
69 |
+
|
70 |
+
|
71 |
+
# Defined in file: ./chapter_preliminaries/calculus.md
|
72 |
+
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
|
73 |
+
ylim=None, xscale='linear', yscale='linear',
|
74 |
+
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
|
75 |
+
"""Plot data points."""
|
76 |
+
if legend is None:
|
77 |
+
legend = []
|
78 |
+
|
79 |
+
set_figsize(figsize)
|
80 |
+
axes = axes if axes else d2l.plt.gca()
|
81 |
+
|
82 |
+
# Return True if `X` (tensor or list) has 1 axis
|
83 |
+
def has_one_axis(X):
|
84 |
+
return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
|
85 |
+
and not hasattr(X[0], "__len__"))
|
86 |
+
|
87 |
+
if has_one_axis(X):
|
88 |
+
X = [X]
|
89 |
+
if Y is None:
|
90 |
+
X, Y = [[]] * len(X), X
|
91 |
+
elif has_one_axis(Y):
|
92 |
+
Y = [Y]
|
93 |
+
if len(X) != len(Y):
|
94 |
+
X = X * len(Y)
|
95 |
+
axes.cla()
|
96 |
+
for x, y, fmt in zip(X, Y, fmts):
|
97 |
+
if len(x):
|
98 |
+
axes.plot(x, y, fmt)
|
99 |
+
else:
|
100 |
+
axes.plot(y, fmt)
|
101 |
+
set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
|
102 |
+
|
103 |
+
|
104 |
+
# Defined in file: ./chapter_linear-networks/linear-regression.md
|
105 |
+
class Timer: #@save
|
106 |
+
"""Record multiple running times."""
|
107 |
+
def __init__(self):
|
108 |
+
self.times = []
|
109 |
+
self.start()
|
110 |
+
|
111 |
+
def start(self):
|
112 |
+
"""Start the timer."""
|
113 |
+
self.tik = time.time()
|
114 |
+
|
115 |
+
def stop(self):
|
116 |
+
"""Stop the timer and record the time in a list."""
|
117 |
+
self.times.append(time.time() - self.tik)
|
118 |
+
return self.times[-1]
|
119 |
+
|
120 |
+
def avg(self):
|
121 |
+
"""Return the average time."""
|
122 |
+
return sum(self.times) / len(self.times)
|
123 |
+
|
124 |
+
def sum(self):
|
125 |
+
"""Return the sum of time."""
|
126 |
+
return sum(self.times)
|
127 |
+
|
128 |
+
def cumsum(self):
|
129 |
+
"""Return the accumulated time."""
|
130 |
+
return np.array(self.times).cumsum().tolist()
|
131 |
+
|
132 |
+
|
133 |
+
# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
|
134 |
+
def synthetic_data(w, b, num_examples): #@save
|
135 |
+
"""Generate y = Xw + b + noise."""
|
136 |
+
X = d2l.normal(0, 1, (num_examples, len(w)))
|
137 |
+
y = d2l.matmul(X, w) + b
|
138 |
+
y += d2l.normal(0, 0.01, y.shape)
|
139 |
+
return X, d2l.reshape(y, (-1, 1))
|
140 |
+
|
141 |
+
|
142 |
+
# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
|
143 |
+
def linreg(X, w, b): #@save
|
144 |
+
"""The linear regression model."""
|
145 |
+
return d2l.matmul(X, w) + b
|
146 |
+
|
147 |
+
|
148 |
+
# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
|
149 |
+
def squared_loss(y_hat, y): #@save
|
150 |
+
"""Squared loss."""
|
151 |
+
return (y_hat - d2l.reshape(y, y_hat.shape)) ** 2 / 2
|
152 |
+
|
153 |
+
|
154 |
+
# Defined in file: ./chapter_linear-networks/linear-regression-scratch.md
|
155 |
+
def sgd(params, lr, batch_size): #@save
|
156 |
+
"""Minibatch stochastic gradient descent."""
|
157 |
+
for param in params:
|
158 |
+
param.data.sub_(lr*param.grad/batch_size)
|
159 |
+
param.grad.data.zero_()
|
160 |
+
|
161 |
+
|
162 |
+
# Defined in file: ./chapter_linear-networks/linear-regression-concise.md
|
163 |
+
def load_array(data_arrays, batch_size, is_train=True): #@save
|
164 |
+
"""Construct a PyTorch data iterator."""
|
165 |
+
dataset = data.TensorDataset(*data_arrays)
|
166 |
+
return data.DataLoader(dataset, batch_size, shuffle=is_train)
|
167 |
+
|
168 |
+
|
169 |
+
# Defined in file: ./chapter_linear-networks/image-classification-dataset.md
|
170 |
+
def get_fashion_mnist_labels(labels): #@save
|
171 |
+
"""Return text labels for the Fashion-MNIST dataset."""
|
172 |
+
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
|
173 |
+
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
|
174 |
+
return [text_labels[int(i)] for i in labels]
|
175 |
+
|
176 |
+
|
177 |
+
# Defined in file: ./chapter_linear-networks/image-classification-dataset.md
|
178 |
+
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
|
179 |
+
"""Plot a list of images."""
|
180 |
+
figsize = (num_cols * scale, num_rows * scale)
|
181 |
+
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
|
182 |
+
axes = axes.flatten()
|
183 |
+
for i, (ax, img) in enumerate(zip(axes, imgs)):
|
184 |
+
ax.imshow(d2l.numpy(img))
|
185 |
+
ax.axes.get_xaxis().set_visible(False)
|
186 |
+
ax.axes.get_yaxis().set_visible(False)
|
187 |
+
if titles:
|
188 |
+
ax.set_title(titles[i])
|
189 |
+
return axes
|
190 |
+
|
191 |
+
|
192 |
+
# Defined in file: ./chapter_linear-networks/image-classification-dataset.md
|
193 |
+
def get_dataloader_workers(): #@save
|
194 |
+
"""Use 4 processes to read the data."""
|
195 |
+
return 4
|
196 |
+
|
197 |
+
|
198 |
+
# Defined in file: ./chapter_linear-networks/image-classification-dataset.md
|
199 |
+
def load_data_fashion_mnist(batch_size, resize=None): #@save
|
200 |
+
"""Download the Fashion-MNIST dataset and then load it into memory."""
|
201 |
+
trans = [transforms.ToTensor()]
|
202 |
+
if resize:
|
203 |
+
trans.insert(0, transforms.Resize(resize))
|
204 |
+
trans = transforms.Compose(trans)
|
205 |
+
mnist_train = torchvision.datasets.FashionMNIST(
|
206 |
+
root="../data", train=True, transform=trans, download=True)
|
207 |
+
mnist_test = torchvision.datasets.FashionMNIST(
|
208 |
+
root="../data", train=False, transform=trans, download=True)
|
209 |
+
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
|
210 |
+
num_workers=get_dataloader_workers()),
|
211 |
+
data.DataLoader(mnist_test, batch_size, shuffle=False,
|
212 |
+
num_workers=get_dataloader_workers()))
|
213 |
+
|
214 |
+
|
215 |
+
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
|
216 |
+
def accuracy(y_hat, y): #@save
|
217 |
+
"""Compute the number of correct predictions."""
|
218 |
+
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
|
219 |
+
y_hat = d2l.argmax(y_hat, axis=1)
|
220 |
+
cmp = d2l.astype(y_hat, y.dtype) == y
|
221 |
+
return float(d2l.reduce_sum(d2l.astype(cmp, y.dtype)))
|
222 |
+
|
223 |
+
|
224 |
+
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
|
225 |
+
def evaluate_accuracy(net, data_iter): #@save
|
226 |
+
"""Compute the accuracy for a model on a dataset."""
|
227 |
+
if isinstance(net, torch.nn.Module):
|
228 |
+
net.eval() # Set the model to evaluation mode
|
229 |
+
metric = Accumulator(2) # No. of correct predictions, no. of predictions
|
230 |
+
for _, (X, y) in enumerate(data_iter):
|
231 |
+
metric.add(accuracy(net(X), y), d2l.size(y))
|
232 |
+
return metric[0] / metric[1]
|
233 |
+
|
234 |
+
|
235 |
+
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
|
236 |
+
class Accumulator: #@save
|
237 |
+
"""For accumulating sums over `n` variables."""
|
238 |
+
def __init__(self, n):
|
239 |
+
self.data = [0.0] * n
|
240 |
+
|
241 |
+
def add(self, *args):
|
242 |
+
self.data = [a + float(b) for a, b in zip(self.data, args)]
|
243 |
+
|
244 |
+
def reset(self):
|
245 |
+
self.data = [0.0] * len(self.data)
|
246 |
+
|
247 |
+
def __getitem__(self, idx):
|
248 |
+
return self.data[idx]
|
249 |
+
|
250 |
+
|
251 |
+
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
|
252 |
+
def train_epoch_ch3(net, train_iter, loss, updater): #@save
|
253 |
+
"""The training loop defined in Chapter 3."""
|
254 |
+
# Set the model to training mode
|
255 |
+
if isinstance(net, torch.nn.Module):
|
256 |
+
net.train()
|
257 |
+
# Sum of training loss, sum of training accuracy, no. of examples
|
258 |
+
metric = Accumulator(3)
|
259 |
+
for X, y in train_iter:
|
260 |
+
# Compute gradients and update parameters
|
261 |
+
y_hat = net(X)
|
262 |
+
l = loss(y_hat, y)
|
263 |
+
if isinstance(updater, torch.optim.Optimizer):
|
264 |
+
updater.zero_grad()
|
265 |
+
l.backward()
|
266 |
+
updater.step()
|
267 |
+
metric.add(float(l) * len(y), accuracy(y_hat, y),
|
268 |
+
y.size().numel())
|
269 |
+
else:
|
270 |
+
l.sum().backward()
|
271 |
+
updater(X.shape[0])
|
272 |
+
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
|
273 |
+
# Return training loss and training accuracy
|
274 |
+
return metric[0] / metric[2], metric[1] / metric[2]
|
275 |
+
|
276 |
+
|
277 |
+
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
|
278 |
+
class Animator: #@save
|
279 |
+
"""For plotting data in animation."""
|
280 |
+
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
|
281 |
+
ylim=None, xscale='linear', yscale='linear',
|
282 |
+
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
|
283 |
+
figsize=(3.5, 2.5)):
|
284 |
+
# Incrementally plot multiple lines
|
285 |
+
if legend is None:
|
286 |
+
legend = []
|
287 |
+
d2l.use_svg_display()
|
288 |
+
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
|
289 |
+
if nrows * ncols == 1:
|
290 |
+
self.axes = [self.axes, ]
|
291 |
+
# Use a lambda function to capture arguments
|
292 |
+
self.config_axes = lambda: d2l.set_axes(
|
293 |
+
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
|
294 |
+
self.X, self.Y, self.fmts = None, None, fmts
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
def add(self, x, y):
|
299 |
+
# Add multiple data points into the figure
|
300 |
+
if not hasattr(y, "__len__"):
|
301 |
+
y = [y]
|
302 |
+
n = len(y)
|
303 |
+
if not hasattr(x, "__len__"):
|
304 |
+
x = [x] * n
|
305 |
+
if not self.X:
|
306 |
+
self.X = [[] for _ in range(n)]
|
307 |
+
if not self.Y:
|
308 |
+
self.Y = [[] for _ in range(n)]
|
309 |
+
for i, (a, b) in enumerate(zip(x, y)):
|
310 |
+
if a is not None and b is not None:
|
311 |
+
self.X[i].append(a)
|
312 |
+
self.Y[i].append(b)
|
313 |
+
self.axes[0].cla()
|
314 |
+
for x, y, fmt in zip(self.X, self.Y, self.fmts):
|
315 |
+
self.axes[0].plot(x, y, fmt)
|
316 |
+
self.config_axes()
|
317 |
+
display.display(self.fig)
|
318 |
+
display.clear_output(wait=True)
|
319 |
+
|
320 |
+
|
321 |
+
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
|
322 |
+
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
|
323 |
+
"""Train a model (defined in Chapter 3)."""
|
324 |
+
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
|
325 |
+
legend=['train loss', 'train acc', 'test acc'])
|
326 |
+
for epoch in range(num_epochs):
|
327 |
+
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
|
328 |
+
test_acc = evaluate_accuracy(net, test_iter)
|
329 |
+
animator.add(epoch + 1, train_metrics + (test_acc,))
|
330 |
+
train_loss, train_acc = train_metrics
|
331 |
+
assert train_loss < 0.5, train_loss
|
332 |
+
assert train_acc <= 1 and train_acc > 0.7, train_acc
|
333 |
+
assert test_acc <= 1 and test_acc > 0.7, test_acc
|
334 |
+
|
335 |
+
|
336 |
+
# Defined in file: ./chapter_linear-networks/softmax-regression-scratch.md
|
337 |
+
def predict_ch3(net, test_iter, n=6): #@save
|
338 |
+
"""Predict labels (defined in Chapter 3)."""
|
339 |
+
for X, y in test_iter:
|
340 |
+
break
|
341 |
+
trues = d2l.get_fashion_mnist_labels(y)
|
342 |
+
preds = d2l.get_fashion_mnist_labels(d2l.argmax(net(X), axis=1))
|
343 |
+
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
|
344 |
+
d2l.show_images(d2l.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])
|
345 |
+
|
346 |
+
|
347 |
+
# Defined in file: ./chapter_multilayer-perceptrons/underfit-overfit.md
|
348 |
+
def evaluate_loss(net, data_iter, loss): #@save
|
349 |
+
"""Evaluate the loss of a model on the given dataset."""
|
350 |
+
metric = d2l.Accumulator(2) # Sum of losses, no. of examples
|
351 |
+
for X, y in data_iter:
|
352 |
+
l = loss(net(X), y)
|
353 |
+
metric.add(d2l.reduce_sum(l), d2l.size(l))
|
354 |
+
return metric[0] / metric[1]
|
355 |
+
|
356 |
+
|
357 |
+
# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
|
358 |
+
DATA_HUB = dict() #@save
|
359 |
+
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/' #@save
|
360 |
+
|
361 |
+
|
362 |
+
# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
|
363 |
+
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/' #@save
|
364 |
+
|
365 |
+
|
366 |
+
# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
|
367 |
+
def download(name, cache_dir=os.path.join('..', 'data')): #@save
|
368 |
+
"""Download a file inserted into DATA_HUB, return the local filename."""
|
369 |
+
assert name in DATA_HUB, f"{name} does not exist in {DATA_HUB}."
|
370 |
+
url, sha1_hash = DATA_HUB[name]
|
371 |
+
d2l.mkdir_if_not_exist(cache_dir)
|
372 |
+
fname = os.path.join(cache_dir, url.split('/')[-1])
|
373 |
+
if os.path.exists(fname):
|
374 |
+
sha1 = hashlib.sha1()
|
375 |
+
with open(fname, 'rb') as f:
|
376 |
+
while True:
|
377 |
+
data = f.read(1048576)
|
378 |
+
if not data:
|
379 |
+
break
|
380 |
+
sha1.update(data)
|
381 |
+
if sha1.hexdigest() == sha1_hash:
|
382 |
+
return fname # Hit cache
|
383 |
+
print(f'Downloading {fname} from {url}...')
|
384 |
+
r = requests.get(url, stream=True, verify=True)
|
385 |
+
with open(fname, 'wb') as f:
|
386 |
+
f.write(r.content)
|
387 |
+
return fname
|
388 |
+
|
389 |
+
|
390 |
+
# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
|
391 |
+
def download_extract(name, folder=None): #@save
|
392 |
+
"""Download and extract a zip/tar file."""
|
393 |
+
fname = download(name)
|
394 |
+
base_dir = os.path.dirname(fname)
|
395 |
+
data_dir, ext = os.path.splitext(fname)
|
396 |
+
if ext == '.zip':
|
397 |
+
fp = zipfile.ZipFile(fname, 'r')
|
398 |
+
elif ext in ('.tar', '.gz'):
|
399 |
+
fp = tarfile.open(fname, 'r')
|
400 |
+
else:
|
401 |
+
assert False, 'Only zip/tar files can be extracted.'
|
402 |
+
fp.extractall(base_dir)
|
403 |
+
return os.path.join(base_dir, folder) if folder else data_dir
|
404 |
+
|
405 |
+
|
406 |
+
# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
|
407 |
+
def download_all(): #@save
|
408 |
+
"""Download all files in the DATA_HUB."""
|
409 |
+
for name in DATA_HUB:
|
410 |
+
download(name)
|
411 |
+
|
412 |
+
|
413 |
+
# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
|
414 |
+
DATA_HUB['kaggle_house_train'] = ( #@save
|
415 |
+
DATA_URL + 'kaggle_house_pred_train.csv',
|
416 |
+
'585e9cc93e70b39160e7921475f9bcd7d31219ce')
|
417 |
+
|
418 |
+
|
419 |
+
# Defined in file: ./chapter_multilayer-perceptrons/kaggle-house-price.md
|
420 |
+
DATA_HUB['kaggle_house_test'] = ( #@save
|
421 |
+
DATA_URL + 'kaggle_house_pred_test.csv',
|
422 |
+
'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
|
423 |
+
|
424 |
+
|
425 |
+
# Defined in file: ./chapter_deep-learning-computation/use-gpu.md
|
426 |
+
def try_gpu(i=0): #@save
|
427 |
+
"""Return gpu(i) if exists, otherwise return cpu()."""
|
428 |
+
if torch.cuda.device_count() >= i + 1:
|
429 |
+
return torch.device(f'cuda:{i}')
|
430 |
+
return torch.device('cpu')
|
431 |
+
|
432 |
+
|
433 |
+
# Defined in file: ./chapter_deep-learning-computation/use-gpu.md
|
434 |
+
def try_all_gpus(): #@save
|
435 |
+
"""Return all available GPUs, or [cpu(),] if no GPU exists."""
|
436 |
+
ctxes = [torch.device(f'cuda:{i}')
|
437 |
+
for i in range(torch.cuda.device_count())]
|
438 |
+
return ctxes if ctxes else [torch.device('cpu')]
|
439 |
+
|
440 |
+
|
441 |
+
# Defined in file: ./chapter_convolutional-neural-networks/conv-layer.md
|
442 |
+
def corr2d(X, K): #@save
|
443 |
+
"""Compute 2D cross-correlation."""
|
444 |
+
h, w = K.shape
|
445 |
+
Y = d2l.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
|
446 |
+
for i in range(Y.shape[0]):
|
447 |
+
for j in range(Y.shape[1]):
|
448 |
+
Y[i, j] = d2l.reduce_sum((X[i: i + h, j: j + w] * K))
|
449 |
+
return Y
|
450 |
+
|
451 |
+
|
452 |
+
# Defined in file: ./chapter_convolutional-neural-networks/lenet.md
|
453 |
+
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
|
454 |
+
net.eval() # Set the model to evaluation mode
|
455 |
+
if not device:
|
456 |
+
device = next(iter(net.parameters())).device
|
457 |
+
metric = d2l.Accumulator(2) # num_corrected_examples, num_examples
|
458 |
+
for X, y in data_iter:
|
459 |
+
X, y = X.to(device), y.to(device)
|
460 |
+
metric.add(d2l.accuracy(net(X), y), d2l.size(y))
|
461 |
+
return metric[0] / metric[1]
|
462 |
+
|
463 |
+
|
464 |
+
# Defined in file: ./chapter_convolutional-neural-networks/lenet.md
|
465 |
+
def train_ch6(net, train_iter, test_iter, num_epochs, lr,
|
466 |
+
device=d2l.try_gpu()):
|
467 |
+
"""Train and evaluate a model with CPU or GPU."""
|
468 |
+
def init_weights(m):
|
469 |
+
if type(m) == nn.Linear or type(m) == nn.Conv2d:
|
470 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
471 |
+
net.apply(init_weights)
|
472 |
+
print('training on', device)
|
473 |
+
net.to(device)
|
474 |
+
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
|
475 |
+
loss = nn.CrossEntropyLoss()
|
476 |
+
animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs],
|
477 |
+
legend=['train loss', 'train acc', 'test acc'])
|
478 |
+
timer = d2l.Timer()
|
479 |
+
for epoch in range(num_epochs):
|
480 |
+
metric = d2l.Accumulator(3) # train_loss, train_acc, num_examples
|
481 |
+
for i, (X, y) in enumerate(train_iter):
|
482 |
+
timer.start()
|
483 |
+
net.train()
|
484 |
+
optimizer.zero_grad()
|
485 |
+
X, y = X.to(device), y.to(device)
|
486 |
+
y_hat = net(X)
|
487 |
+
l = loss(y_hat, y)
|
488 |
+
l.backward()
|
489 |
+
optimizer.step()
|
490 |
+
with torch.no_grad():
|
491 |
+
metric.add(l*X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
|
492 |
+
timer.stop()
|
493 |
+
train_loss, train_acc = metric[0]/metric[2], metric[1]/metric[2]
|
494 |
+
if (i+1) % 50 == 0:
|
495 |
+
animator.add(epoch + i/len(train_iter),
|
496 |
+
(train_loss, train_acc, None))
|
497 |
+
test_acc = evaluate_accuracy_gpu(net, test_iter)
|
498 |
+
animator.add(epoch+1, (None, None, test_acc))
|
499 |
+
print(f'loss {train_loss:.3f}, train acc {train_acc:.3f}, '
|
500 |
+
f'test acc {test_acc:.3f}')
|
501 |
+
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
|
502 |
+
f'on {str(device)}')
|
503 |
+
|
504 |
+
|
505 |
+
# Defined in file: ./chapter_convolutional-modern/resnet.md
|
506 |
+
class Residual(nn.Module): #@save
|
507 |
+
def __init__(self, input_channels, num_channels,
|
508 |
+
use_1x1conv=False, strides=1):
|
509 |
+
super().__init__()
|
510 |
+
self.conv1 = nn.Conv2d(input_channels, num_channels,
|
511 |
+
kernel_size=3, padding=1, stride=strides)
|
512 |
+
self.conv2 = nn.Conv2d(num_channels, num_channels,
|
513 |
+
kernel_size=3, padding=1)
|
514 |
+
if use_1x1conv:
|
515 |
+
self.conv3 = nn.Conv2d(input_channels, num_channels,
|
516 |
+
kernel_size=1, stride=strides)
|
517 |
+
else:
|
518 |
+
self.conv3 = None
|
519 |
+
self.bn1 = nn.BatchNorm2d(num_channels)
|
520 |
+
self.bn2 = nn.BatchNorm2d(num_channels)
|
521 |
+
self.relu = nn.ReLU(inplace=True)
|
522 |
+
|
523 |
+
def forward(self, X):
|
524 |
+
Y = F.relu(self.bn1(self.conv1(X)))
|
525 |
+
Y = self.bn2(self.conv2(Y))
|
526 |
+
if self.conv3:
|
527 |
+
X = self.conv3(X)
|
528 |
+
Y += X
|
529 |
+
return F.relu(Y)
|
530 |
+
|
531 |
+
|
532 |
+
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
|
533 |
+
d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt',
|
534 |
+
'090b5e7e70c295757f55df93cb0a180b9691891a')
|
535 |
+
|
536 |
+
|
537 |
+
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
|
538 |
+
def read_time_machine(): #@save
|
539 |
+
"""Load the time machine book into a list of sentences."""
|
540 |
+
with open(d2l.download('time_machine'), 'r') as f:
|
541 |
+
lines = f.readlines()
|
542 |
+
return [re.sub('[^A-Za-z]+', ' ', line.strip().lower())
|
543 |
+
for line in lines]
|
544 |
+
|
545 |
+
|
546 |
+
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
|
547 |
+
def tokenize(lines, token='word'): #@save
|
548 |
+
"""Split sentences into word or char tokens."""
|
549 |
+
if token == 'word':
|
550 |
+
return [line.split(' ') for line in lines]
|
551 |
+
elif token == 'char':
|
552 |
+
return [list(line) for line in lines]
|
553 |
+
else:
|
554 |
+
print('ERROR: unknown token type '+token)
|
555 |
+
|
556 |
+
|
557 |
+
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
|
558 |
+
class Vocab: #@save
|
559 |
+
def __init__(self, tokens, min_freq=0, reserved_tokens=None):
|
560 |
+
if reserved_tokens is None:
|
561 |
+
reserved_tokens = []
|
562 |
+
# Sort according to frequencies
|
563 |
+
counter = count_corpus(tokens)
|
564 |
+
self.token_freqs = sorted(counter.items(), key=lambda x: x[0])
|
565 |
+
self.token_freqs.sort(key=lambda x: x[1], reverse=True)
|
566 |
+
self.unk, uniq_tokens = 0, ['<unk>'] + reserved_tokens
|
567 |
+
uniq_tokens += [token for token, freq in self.token_freqs
|
568 |
+
if freq >= min_freq and token not in uniq_tokens]
|
569 |
+
self.idx_to_token, self.token_to_idx = [], dict()
|
570 |
+
for token in uniq_tokens:
|
571 |
+
self.idx_to_token.append(token)
|
572 |
+
self.token_to_idx[token] = len(self.idx_to_token) - 1
|
573 |
+
|
574 |
+
def __len__(self):
|
575 |
+
return len(self.idx_to_token)
|
576 |
+
|
577 |
+
def __getitem__(self, tokens):
|
578 |
+
if not isinstance(tokens, (list, tuple)):
|
579 |
+
return self.token_to_idx.get(tokens, self.unk)
|
580 |
+
return [self.__getitem__(token) for token in tokens]
|
581 |
+
|
582 |
+
def to_tokens(self, indices):
|
583 |
+
if not isinstance(indices, (list, tuple)):
|
584 |
+
return self.idx_to_token[indices]
|
585 |
+
return [self.idx_to_token[index] for index in indices]
|
586 |
+
|
587 |
+
|
588 |
+
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
|
589 |
+
def count_corpus(sentences): #@save
|
590 |
+
# Flatten a list of token lists into a list of tokens
|
591 |
+
tokens = [tk for line in sentences for tk in line]
|
592 |
+
return collections.Counter(tokens)
|
593 |
+
|
594 |
+
|
595 |
+
# Defined in file: ./chapter_recurrent-neural-networks/text-preprocessing.md
|
596 |
+
def load_corpus_time_machine(max_tokens=-1): #@save
|
597 |
+
lines = read_time_machine()
|
598 |
+
tokens = tokenize(lines, 'char')
|
599 |
+
vocab = Vocab(tokens)
|
600 |
+
corpus = [vocab[tk] for line in tokens for tk in line]
|
601 |
+
if max_tokens > 0:
|
602 |
+
corpus = corpus[:max_tokens]
|
603 |
+
return corpus, vocab
|
604 |
+
|
605 |
+
|
606 |
+
# Defined in file: ./chapter_recurrent-neural-networks/language-models-and-dataset.md
|
607 |
+
def seq_data_iter_random(corpus, batch_size, num_steps): #@save
|
608 |
+
# Offset the iterator over the data for uniform starts
|
609 |
+
corpus = corpus[random.randint(0, num_steps):]
|
610 |
+
# Subtract 1 extra since we need to account for label
|
611 |
+
num_examples = ((len(corpus) - 1) // num_steps)
|
612 |
+
example_indices = list(range(0, num_examples * num_steps, num_steps))
|
613 |
+
random.shuffle(example_indices)
|
614 |
+
|
615 |
+
def data(pos):
|
616 |
+
# This returns a sequence of length `num_steps` starting from `pos`
|
617 |
+
return corpus[pos: pos + num_steps]
|
618 |
+
|
619 |
+
# Discard half empty batches
|
620 |
+
num_batches = num_examples // batch_size
|
621 |
+
for i in range(0, batch_size * num_batches, batch_size):
|
622 |
+
# `batch_size` indicates the random examples read each time
|
623 |
+
batch_indices = example_indices[i:(i+batch_size)]
|
624 |
+
X = [data(j) for j in batch_indices]
|
625 |
+
Y = [data(j + 1) for j in batch_indices]
|
626 |
+
yield d2l.tensor(X), d2l.tensor(Y)
|
627 |
+
|
628 |
+
|
629 |
+
# Defined in file: ./chapter_recurrent-neural-networks/language-models-and-dataset.md
|
630 |
+
def seq_data_iter_consecutive(corpus, batch_size, num_steps): #@save
|
631 |
+
# Offset for the iterator over the data for uniform starts
|
632 |
+
offset = random.randint(0, num_steps)
|
633 |
+
# Slice out data: ignore `num_steps` and just wrap around
|
634 |
+
num_indices = ((len(corpus) - offset - 1) // batch_size) * batch_size
|
635 |
+
Xs = d2l.tensor(corpus[offset:offset+num_indices])
|
636 |
+
Ys = d2l.tensor(corpus[offset+1:offset+1+num_indices])
|
637 |
+
Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
|
638 |
+
num_batches = Xs.shape[1] // num_steps
|
639 |
+
for i in range(0, num_batches * num_steps, num_steps):
|
640 |
+
X = Xs[:, i:(i+num_steps)]
|
641 |
+
Y = Ys[:, i:(i+num_steps)]
|
642 |
+
yield X, Y
|
643 |
+
|
644 |
+
|
645 |
+
# Defined in file: ./chapter_recurrent-neural-networks/language-models-and-dataset.md
|
646 |
+
class SeqDataLoader: #@save
|
647 |
+
"""A iterator to load sequence data."""
|
648 |
+
def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):
|
649 |
+
if use_random_iter:
|
650 |
+
self.data_iter_fn = d2l.seq_data_iter_random
|
651 |
+
else:
|
652 |
+
self.data_iter_fn = d2l.seq_data_iter_consecutive
|
653 |
+
self.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens)
|
654 |
+
self.batch_size, self.num_steps = batch_size, num_steps
|
655 |
+
|
656 |
+
def __iter__(self):
|
657 |
+
return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)
|
658 |
+
|
659 |
+
|
660 |
+
# Defined in file: ./chapter_recurrent-neural-networks/language-models-and-dataset.md
|
661 |
+
def load_data_time_machine(batch_size, num_steps, #@save
|
662 |
+
use_random_iter=False, max_tokens=10000):
|
663 |
+
data_iter = SeqDataLoader(
|
664 |
+
batch_size, num_steps, use_random_iter, max_tokens)
|
665 |
+
return data_iter, data_iter.vocab
|
666 |
+
|
667 |
+
|
668 |
+
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
|
669 |
+
class RNNModelScratch: #@save
|
670 |
+
"""A RNN Model based on scratch implementations."""
|
671 |
+
def __init__(self, vocab_size, num_hiddens, device,
|
672 |
+
get_params, init_state, forward):
|
673 |
+
self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
|
674 |
+
self.params = get_params(vocab_size, num_hiddens, device)
|
675 |
+
self.init_state, self.forward_fn = init_state, forward
|
676 |
+
|
677 |
+
def __call__(self, X, state):
|
678 |
+
X = F.one_hot(X.T.long(), self.vocab_size).type(torch.float32)
|
679 |
+
return self.forward_fn(X, state, self.params)
|
680 |
+
|
681 |
+
def begin_state(self, batch_size, device):
|
682 |
+
return self.init_state(batch_size, self.num_hiddens, device)
|
683 |
+
|
684 |
+
|
685 |
+
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
|
686 |
+
def predict_ch8(prefix, num_predicts, model, vocab, device): #@save
|
687 |
+
state = model.begin_state(batch_size=1, device=device)
|
688 |
+
outputs = [vocab[prefix[0]]]
|
689 |
+
get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape(1, 1)
|
690 |
+
for y in prefix[1:]: # Warmup state with prefix
|
691 |
+
_, state = model(get_input(), state)
|
692 |
+
outputs.append(vocab[y])
|
693 |
+
for _ in range(num_predicts): # Predict num_predicts steps
|
694 |
+
Y, state = model(get_input(), state)
|
695 |
+
outputs.append(int(Y.argmax(dim=1).reshape(1)))
|
696 |
+
return ''.join([vocab.idx_to_token[i] for i in outputs])
|
697 |
+
|
698 |
+
|
699 |
+
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
|
700 |
+
def grad_clipping(model, theta): #@save
|
701 |
+
if isinstance(model, nn.Module):
|
702 |
+
params = [p for p in model.parameters() if p.requires_grad]
|
703 |
+
else:
|
704 |
+
params = model.params
|
705 |
+
norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
|
706 |
+
if norm > theta:
|
707 |
+
for param in params:
|
708 |
+
param.grad[:] *= theta / norm
|
709 |
+
|
710 |
+
|
711 |
+
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
|
712 |
+
def train_epoch_ch8(model, train_iter, loss, updater, device, use_random_iter): #@save
|
713 |
+
state, timer = None, d2l.Timer()
|
714 |
+
metric = d2l.Accumulator(2) # loss_sum, num_examples
|
715 |
+
for X, Y in train_iter:
|
716 |
+
if state is None or use_random_iter:
|
717 |
+
# Initialize state when either it is the first iteration or
|
718 |
+
# using random sampling.
|
719 |
+
state = model.begin_state(batch_size=X.shape[0], device=device)
|
720 |
+
else:
|
721 |
+
for s in state:
|
722 |
+
s.detach_()
|
723 |
+
y = Y.T.reshape(-1)
|
724 |
+
X, y = X.to(device), y.to(device)
|
725 |
+
py, state = model(X, state)
|
726 |
+
l = loss(py, y.long()).mean()
|
727 |
+
if isinstance(updater, torch.optim.Optimizer):
|
728 |
+
updater.zero_grad()
|
729 |
+
l.backward()
|
730 |
+
grad_clipping(model, 1)
|
731 |
+
updater.step()
|
732 |
+
else:
|
733 |
+
l.backward()
|
734 |
+
grad_clipping(model, 1)
|
735 |
+
updater(batch_size=1) # Since used mean already
|
736 |
+
metric.add(l * d2l.size(y), d2l.size(y))
|
737 |
+
return math.exp(metric[0]/metric[1]), metric[1]/timer.stop()
|
738 |
+
|
739 |
+
|
740 |
+
# Defined in file: ./chapter_recurrent-neural-networks/rnn-scratch.md
|
741 |
+
def train_ch8(model, train_iter, vocab, lr, num_epochs, device,
|
742 |
+
use_random_iter=False):
|
743 |
+
# Initialize
|
744 |
+
loss = nn.CrossEntropyLoss()
|
745 |
+
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
|
746 |
+
legend=['train'], xlim=[1, num_epochs])
|
747 |
+
if isinstance(model, nn.Module):
|
748 |
+
trainer = torch.optim.SGD(model.parameters(), lr)
|
749 |
+
updater = lambda batch_size: trainer.step()
|
750 |
+
else:
|
751 |
+
updater = lambda batch_size: d2l.sgd(model.params, lr, batch_size)
|
752 |
+
predict = lambda prefix: predict_ch8(prefix, 50, model, vocab, device)
|
753 |
+
# Train and check the progress.
|
754 |
+
for epoch in range(num_epochs):
|
755 |
+
ppl, speed = train_epoch_ch8(
|
756 |
+
model, train_iter, loss, updater, device, use_random_iter)
|
757 |
+
if epoch % 10 == 0:
|
758 |
+
print(predict('time traveller'))
|
759 |
+
animator.add(epoch+1, [ppl])
|
760 |
+
print(f'perplexity {ppl:.1f}, {speed:.1f} tokens/sec on {str(device)}')
|
761 |
+
print(predict('time traveller'))
|
762 |
+
print(predict('traveller'))
|
763 |
+
|
764 |
+
|
765 |
+
# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
|
766 |
+
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip',
|
767 |
+
'94646ad1522d915e7b0f9296181140edcf86a4f5')
|
768 |
+
|
769 |
+
|
770 |
+
# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
|
771 |
+
def read_data_nmt():
|
772 |
+
data_dir = d2l.download_extract('fra-eng')
|
773 |
+
with open(os.path.join(data_dir, 'fra.txt'), 'r') as f:
|
774 |
+
return f.read()
|
775 |
+
|
776 |
+
|
777 |
+
# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
|
778 |
+
def preprocess_nmt(text):
|
779 |
+
def no_space(char, prev_char):
|
780 |
+
return char in set(',.!') and prev_char != ' '
|
781 |
+
|
782 |
+
text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
|
783 |
+
out = [' ' + char if i > 0 and no_space(char, text[i-1]) else char
|
784 |
+
for i, char in enumerate(text)]
|
785 |
+
return ''.join(out)
|
786 |
+
|
787 |
+
|
788 |
+
# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
|
789 |
+
def tokenize_nmt(text, num_examples=None):
|
790 |
+
source, target = [], []
|
791 |
+
for i, line in enumerate(text.split('\n')):
|
792 |
+
if num_examples and i > num_examples:
|
793 |
+
break
|
794 |
+
parts = line.split('\t')
|
795 |
+
if len(parts) == 2:
|
796 |
+
source.append(parts[0].split(' '))
|
797 |
+
target.append(parts[1].split(' '))
|
798 |
+
return source, target
|
799 |
+
|
800 |
+
|
801 |
+
# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
|
802 |
+
def truncate_pad(line, num_steps, padding_token):
|
803 |
+
if len(line) > num_steps:
|
804 |
+
return line[:num_steps] # Trim
|
805 |
+
return line + [padding_token] * (num_steps - len(line)) # Pad
|
806 |
+
|
807 |
+
|
808 |
+
# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
|
809 |
+
def build_array(lines, vocab, num_steps, is_source):
|
810 |
+
lines = [vocab[l] for l in lines]
|
811 |
+
if not is_source:
|
812 |
+
lines = [[vocab['<bos>']] + l + [vocab['<eos>']] for l in lines]
|
813 |
+
array = torch.tensor([truncate_pad(
|
814 |
+
l, num_steps, vocab['<pad>']) for l in lines])
|
815 |
+
valid_len = (array != vocab['<pad>']).sum(dim=1)
|
816 |
+
return array, valid_len
|
817 |
+
|
818 |
+
|
819 |
+
# Defined in file: ./chapter_recurrent-modern/machine-translation-and-dataset.md
|
820 |
+
def load_data_nmt(batch_size, num_steps, num_examples=1000):
|
821 |
+
text = preprocess_nmt(read_data_nmt())
|
822 |
+
source, target = tokenize_nmt(text, num_examples)
|
823 |
+
src_vocab = d2l.Vocab(source, min_freq=3,
|
824 |
+
reserved_tokens=['<pad>', '<bos>', '<eos>'])
|
825 |
+
tgt_vocab = d2l.Vocab(target, min_freq=3,
|
826 |
+
reserved_tokens=['<pad>', '<bos>', '<eos>'])
|
827 |
+
src_array, src_valid_len = build_array(
|
828 |
+
source, src_vocab, num_steps, True)
|
829 |
+
tgt_array, tgt_valid_len = build_array(
|
830 |
+
target, tgt_vocab, num_steps, False)
|
831 |
+
data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
|
832 |
+
data_iter = d2l.load_array(data_arrays, batch_size)
|
833 |
+
return src_vocab, tgt_vocab, data_iter
|
834 |
+
|
835 |
+
|
836 |
+
# Defined in file: ./chapter_recurrent-modern/encoder-decoder.md
|
837 |
+
class Encoder(nn.Module):
|
838 |
+
"""The base encoder interface for the encoder-decoder architecture."""
|
839 |
+
def __init__(self, **kwargs):
|
840 |
+
super(Encoder, self).__init__(**kwargs)
|
841 |
+
|
842 |
+
def forward(self, X, *args):
|
843 |
+
raise NotImplementedError
|
844 |
+
|
845 |
+
|
846 |
+
# Defined in file: ./chapter_recurrent-modern/encoder-decoder.md
|
847 |
+
class Decoder(nn.Module):
|
848 |
+
"""The base decoder interface for the encoder-decoder architecture."""
|
849 |
+
def __init__(self, **kwargs):
|
850 |
+
super(Decoder, self).__init__(**kwargs)
|
851 |
+
|
852 |
+
def init_state(self, enc_outputs, *args):
|
853 |
+
raise NotImplementedError
|
854 |
+
|
855 |
+
def forward(self, X, state):
|
856 |
+
raise NotImplementedError
|
857 |
+
|
858 |
+
|
859 |
+
# Defined in file: ./chapter_recurrent-modern/encoder-decoder.md
|
860 |
+
class EncoderDecoder(nn.Module):
|
861 |
+
"""The base class for the encoder-decoder architecture."""
|
862 |
+
def __init__(self, encoder, decoder, **kwargs):
|
863 |
+
super(EncoderDecoder, self).__init__(**kwargs)
|
864 |
+
self.encoder = encoder
|
865 |
+
self.decoder = decoder
|
866 |
+
|
867 |
+
def forward(self, enc_X, dec_X, *args):
|
868 |
+
enc_outputs = self.encoder(enc_X, *args)
|
869 |
+
dec_state = self.decoder.init_state(enc_outputs, *args)
|
870 |
+
return self.decoder(dec_X, dec_state)
|
871 |
+
|
872 |
+
|
873 |
+
# Defined in file: ./chapter_recurrent-modern/seq2seq.md
|
874 |
+
class Seq2SeqEncoder(d2l.Encoder):
|
875 |
+
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
|
876 |
+
dropout=0, **kwargs):
|
877 |
+
super(Seq2SeqEncoder, self).__init__(**kwargs)
|
878 |
+
self.embedding = nn.Embedding(vocab_size, embed_size)
|
879 |
+
self.rnn = nn.LSTM(embed_size, num_hiddens, num_layers, dropout=dropout)
|
880 |
+
|
881 |
+
def forward(self, X, *args):
|
882 |
+
X = self.embedding(X) # X shape: (batch_size, seq_len, embed_size)
|
883 |
+
# RNN needs first axes to be timestep, i.e., seq_len
|
884 |
+
X = X.permute(1, 0, 2)
|
885 |
+
out, state = self.rnn(X) # When state is not mentioned, it defaults to zeros
|
886 |
+
# out shape: (seq_len, batch_size, num_hiddens)
|
887 |
+
# state shape: (num_layers, batch_size, num_hiddens),
|
888 |
+
# where "state" contains the hidden state and the memory cell
|
889 |
+
return out, state
|
890 |
+
|
891 |
+
|
892 |
+
# Defined in file: ./chapter_recurrent-modern/seq2seq.md
|
893 |
+
class Seq2SeqDecoder(d2l.Decoder):
|
894 |
+
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
|
895 |
+
dropout=0, **kwargs):
|
896 |
+
super(Seq2SeqDecoder, self).__init__(**kwargs)
|
897 |
+
self.embedding = nn.Embedding(vocab_size, embed_size)
|
898 |
+
self.rnn = nn.LSTM(embed_size, num_hiddens, num_layers, dropout=dropout)
|
899 |
+
self.dense = nn.Linear(num_hiddens, vocab_size)
|
900 |
+
|
901 |
+
def init_state(self, enc_outputs, *args):
|
902 |
+
return enc_outputs[1]
|
903 |
+
|
904 |
+
def forward(self, X, state):
|
905 |
+
X = self.embedding(X).permute(1, 0, 2)
|
906 |
+
out, state = self.rnn(X, state)
|
907 |
+
# Make the batch to be the first dimension to simplify loss computation
|
908 |
+
out = self.dense(out).permute(1, 0, 2)
|
909 |
+
return out, state
|
910 |
+
|
911 |
+
|
912 |
+
# Defined in file: ./chapter_recurrent-modern/seq2seq.md
|
913 |
+
def sequence_mask(X, valid_len, value=0):
|
914 |
+
output = X.clone()
|
915 |
+
for count, matrix in enumerate(output):
|
916 |
+
matrix[int(valid_len[count]):]=value
|
917 |
+
return output
|
918 |
+
|
919 |
+
|
920 |
+
# Defined in file: ./chapter_recurrent-modern/seq2seq.md
|
921 |
+
class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
|
922 |
+
# pred shape: (batch_size, seq_len, vocab_size)
|
923 |
+
# label shape: (batch_size, seq_len)
|
924 |
+
# valid_len shape: (batch_size, )
|
925 |
+
def forward(self, pred, label, valid_len):
|
926 |
+
weights = torch.ones_like(label)
|
927 |
+
weights = sequence_mask(weights, valid_len)
|
928 |
+
self.reduction='none'
|
929 |
+
unweighted_loss = super(MaskedSoftmaxCELoss, self).forward(pred.permute(0,2,1), label)
|
930 |
+
weighted_loss = (unweighted_loss*weights).mean(dim=1)
|
931 |
+
return weighted_loss
|
932 |
+
|
933 |
+
|
934 |
+
# Defined in file: ./chapter_recurrent-modern/seq2seq.md
|
935 |
+
def train_s2s_ch9(model, data_iter, lr, num_epochs, device):
|
936 |
+
def xavier_init_weights(m):
|
937 |
+
if type(m) == nn.Linear:
|
938 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
939 |
+
if type(m) == nn.LSTM:
|
940 |
+
for param in m._flat_weights_names:
|
941 |
+
if "weight" in param:
|
942 |
+
torch.nn.init.xavier_uniform_(m._parameters[param])
|
943 |
+
model.apply(xavier_init_weights)
|
944 |
+
model.to(device)
|
945 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
946 |
+
loss = MaskedSoftmaxCELoss()
|
947 |
+
model.train()
|
948 |
+
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
|
949 |
+
xlim=[1, num_epochs], ylim=[0, 0.25])
|
950 |
+
for epoch in range(1, num_epochs + 1):
|
951 |
+
timer = d2l.Timer()
|
952 |
+
metric = d2l.Accumulator(2) # loss_sum, num_tokens
|
953 |
+
for batch in data_iter:
|
954 |
+
X, X_vlen, Y, Y_vlen = [x.to(device) for x in batch]
|
955 |
+
Y_input, Y_label, Y_vlen = Y[:, :-1], Y[:, 1:], Y_vlen-1
|
956 |
+
Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen)
|
957 |
+
l = loss(Y_hat, Y_label, Y_vlen)
|
958 |
+
l.sum().backward() # Making the loss scalar for backward()
|
959 |
+
d2l.grad_clipping(model, 1)
|
960 |
+
num_tokens = Y_vlen.sum()
|
961 |
+
optimizer.step()
|
962 |
+
with torch.no_grad():
|
963 |
+
metric.add(l.sum(), num_tokens)
|
964 |
+
if epoch % 10 == 0:
|
965 |
+
animator.add(epoch, (metric[0]/metric[1],))
|
966 |
+
print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} '
|
967 |
+
f'tokens/sec on {str(device)}')
|
968 |
+
|
969 |
+
|
970 |
+
# Defined in file: ./chapter_recurrent-modern/seq2seq.md
|
971 |
+
def predict_s2s_ch9(model, src_sentence, src_vocab, tgt_vocab, num_steps,
|
972 |
+
device):
|
973 |
+
src_tokens = src_vocab[src_sentence.lower().split(' ')]
|
974 |
+
enc_valid_len = torch.tensor([len(src_tokens)], device=device)
|
975 |
+
src_tokens = d2l.truncate_pad(src_tokens, num_steps, src_vocab['<pad>'])
|
976 |
+
enc_X = torch.tensor(src_tokens, dtype=torch.long, device=device)
|
977 |
+
# Add the batch size dimension
|
978 |
+
enc_outputs = model.encoder(torch.unsqueeze(enc_X, dim=0),
|
979 |
+
enc_valid_len)
|
980 |
+
dec_state = model.decoder.init_state(enc_outputs, enc_valid_len)
|
981 |
+
dec_X = torch.unsqueeze(torch.tensor([tgt_vocab['<bos>']], dtype=torch.long, device=device), dim=0)
|
982 |
+
predict_tokens = []
|
983 |
+
for _ in range(num_steps):
|
984 |
+
Y, dec_state = model.decoder(dec_X, dec_state)
|
985 |
+
# The token with highest score is used as the next timestep input
|
986 |
+
dec_X = Y.argmax(dim=2)
|
987 |
+
py = dec_X.squeeze(dim=0).type(torch.int32).item()
|
988 |
+
if py == tgt_vocab['<eos>']:
|
989 |
+
break
|
990 |
+
predict_tokens.append(py)
|
991 |
+
return ' '.join(tgt_vocab.to_tokens(predict_tokens))
|
992 |
+
|
993 |
+
|
994 |
+
# Defined in file: ./chapter_attention-mechanisms/attention.md
|
995 |
+
def masked_softmax(X, valid_len):
|
996 |
+
"""Perform softmax by filtering out some elements."""
|
997 |
+
# X: 3-D tensor, valid_len: 1-D or 2-D tensor
|
998 |
+
if valid_len is None:
|
999 |
+
return nn.functional.softmax(X, dim=-1)
|
1000 |
+
else:
|
1001 |
+
shape = X.shape
|
1002 |
+
if valid_len.dim() == 1:
|
1003 |
+
valid_len = torch.repeat_interleave(valid_len, repeats=shape[1],
|
1004 |
+
dim=0)
|
1005 |
+
else:
|
1006 |
+
valid_len = valid_len.reshape(-1)
|
1007 |
+
# Fill masked elements with a large negative, whose exp is 0
|
1008 |
+
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_len, value=-1e6)
|
1009 |
+
return nn.functional.softmax(X.reshape(shape), dim=-1)
|
1010 |
+
|
1011 |
+
|
1012 |
+
# Defined in file: ./chapter_attention-mechanisms/attention.md
|
1013 |
+
class DotProductAttention(nn.Module):
|
1014 |
+
def __init__(self, dropout, **kwargs):
|
1015 |
+
super(DotProductAttention, self).__init__(**kwargs)
|
1016 |
+
self.dropout = nn.Dropout(dropout)
|
1017 |
+
|
1018 |
+
# `query`: (`batch_size`, #queries, `d`)
|
1019 |
+
# `key`: (`batch_size`, #kv_pairs, `d`)
|
1020 |
+
# `value`: (`batch_size`, #kv_pairs, `dim_v`)
|
1021 |
+
# `valid_len`: either (`batch_size`, ) or (`batch_size`, xx)
|
1022 |
+
def forward(self, query, key, value, valid_len=None):
|
1023 |
+
d = query.shape[-1]
|
1024 |
+
# Set transpose_b=True to swap the last two dimensions of key
|
1025 |
+
scores = torch.bmm(query, key.transpose(1,2)) / math.sqrt(d)
|
1026 |
+
attention_weights = self.dropout(masked_softmax(scores, valid_len))
|
1027 |
+
return torch.bmm(attention_weights, value)
|
1028 |
+
|
1029 |
+
|
1030 |
+
# Defined in file: ./chapter_attention-mechanisms/attention.md
|
1031 |
+
class MLPAttention(nn.Module):
|
1032 |
+
def __init__(self, key_size, query_size, units, dropout, **kwargs):
|
1033 |
+
super(MLPAttention, self).__init__(**kwargs)
|
1034 |
+
self.W_k = nn.Linear(key_size, units, bias=False)
|
1035 |
+
self.W_q = nn.Linear(query_size, units, bias=False)
|
1036 |
+
self.v = nn.Linear(units, 1, bias=False)
|
1037 |
+
self.dropout = nn.Dropout(dropout)
|
1038 |
+
|
1039 |
+
def forward(self, query, key, value, valid_len):
|
1040 |
+
query, key = self.W_k(query), self.W_q(key)
|
1041 |
+
# Expand query to (`batch_size`, #queries, 1, units), and key to
|
1042 |
+
# (`batch_size`, 1, #kv_pairs, units). Then plus them with broadcast
|
1043 |
+
features = query.unsqueeze(2) + key.unsqueeze(1)
|
1044 |
+
scores = self.v(features).squeeze(-1)
|
1045 |
+
attention_weights = self.dropout(masked_softmax(scores, valid_len))
|
1046 |
+
return torch.bmm(attention_weights, value)
|
1047 |
+
|
1048 |
+
|
1049 |
+
# Defined in file: ./chapter_optimization/optimization-intro.md
|
1050 |
+
def annotate(text, xy, xytext): #@save
|
1051 |
+
d2l.plt.gca().annotate(text, xy=xy, xytext=xytext,
|
1052 |
+
arrowprops=dict(arrowstyle='->'))
|
1053 |
+
|
1054 |
+
|
1055 |
+
# Defined in file: ./chapter_optimization/gd.md
|
1056 |
+
def train_2d(trainer, steps=20): #@save
|
1057 |
+
"""Optimize a 2-dim objective function with a customized trainer."""
|
1058 |
+
# s1 and s2 are internal state variables and will
|
1059 |
+
# be used later in the chapter
|
1060 |
+
x1, x2, s1, s2 = -5, -2, 0, 0
|
1061 |
+
results = [(x1, x2)]
|
1062 |
+
for i in range(steps):
|
1063 |
+
x1, x2, s1, s2 = trainer(x1, x2, s1, s2)
|
1064 |
+
results.append((x1, x2))
|
1065 |
+
return results
|
1066 |
+
|
1067 |
+
|
1068 |
+
# Defined in file: ./chapter_optimization/gd.md
|
1069 |
+
def show_trace_2d(f, results): #@save
|
1070 |
+
"""Show the trace of 2D variables during optimization."""
|
1071 |
+
d2l.set_figsize()
|
1072 |
+
d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e')
|
1073 |
+
x1, x2 = d2l.meshgrid(d2l.arange(-5.5, 1.0, 0.1),
|
1074 |
+
d2l.arange(-3.0, 1.0, 0.1))
|
1075 |
+
d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4')
|
1076 |
+
d2l.plt.xlabel('x1')
|
1077 |
+
d2l.plt.ylabel('x2')
|
1078 |
+
|
1079 |
+
|
1080 |
+
# Alias defined in config.ini
|
1081 |
+
|
1082 |
+
|
1083 |
+
ones = torch.ones
|
1084 |
+
zeros = torch.zeros
|
1085 |
+
tensor = torch.tensor
|
1086 |
+
arange = torch.arange
|
1087 |
+
meshgrid = torch.meshgrid
|
1088 |
+
sin = torch.sin
|
1089 |
+
sinh = torch.sinh
|
1090 |
+
cos = torch.cos
|
1091 |
+
cosh = torch.cosh
|
1092 |
+
tanh = torch.tanh
|
1093 |
+
linspace = torch.linspace
|
1094 |
+
exp = torch.exp
|
1095 |
+
log = torch.log
|
1096 |
+
normal = torch.normal
|
1097 |
+
matmul = torch.matmul
|
1098 |
+
int32 = torch.int32
|
1099 |
+
float32 = torch.float32
|
1100 |
+
concat = torch.cat
|
1101 |
+
stack = torch.stack
|
1102 |
+
abs = torch.abs
|
1103 |
+
numpy = lambda x, *args, **kwargs: x.detach().numpy(*args, **kwargs)
|
1104 |
+
size = lambda x, *args, **kwargs: x.numel(*args, **kwargs)
|
1105 |
+
reshape = lambda x, *args, **kwargs: x.reshape(*args, **kwargs)
|
1106 |
+
to = lambda x, *args, **kwargs: x.to(*args, **kwargs)
|
1107 |
+
reduce_sum = lambda x, *args, **kwargs: x.sum(*args, **kwargs)
|
1108 |
+
argmax = lambda x, *args, **kwargs: x.argmax(*args, **kwargs)
|
1109 |
+
astype = lambda x, *args, **kwargs: x.type(*args, **kwargs)
|
1110 |
+
transpose = lambda x, *args, **kwargs: x.t(*args, **kwargs)
|
1111 |
+
|