File size: 10,016 Bytes
e8bc872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# %matplotlib inline
# optuna-dashboard sqlite:///db.sqlite3
# https://github.com/optuna/optuna-dashboard

import optuna   # Used for the hyperparameter tuning, because cba anymore to do in any other way.
import gc
import torch
from torch.utils import data
import torchvision.datasets as datasets
from torchvision import transforms
from torch import nn
import random
import my_utils as mu
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')



train_trans =  transforms.Compose([
    # add transformations, and data augmentation, to increase batch size and increase generalization.
    # transforms.FiveCrop(size=(32,32)),  # might remove this.
    transforms.RandomPerspective(distortion_scale=0.6, p=0.4),
    transforms.GaussianBlur(kernel_size=(5, 11), sigma=(0.1, 0.2)),
    transforms.RandomRotation(degrees=(-8, 8)),
    transforms.ToTensor(),
    # transforms.Normalize((0.49139968, 0.48215827 ,0.44653124), (0.24703233, 0.24348505, 0.26158768))
])

test_trans = transforms.Compose([
    # This is all we need for the normalization of the model.
    transforms.ToTensor(),
    # transforms.Normalize((0.49139968, 0.48215827, 0.44653124), (0.24703233, 0.24348505, 0.26158768))
])


# Required for data to be in Tensor form not PIL Image
trans = [transforms.ToTensor()]
trans = transforms.Compose(trans)

cifar_trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_trans)
cifar_testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=test_trans)
# 60,000 32x32 color images in 10 different classes

# batch_size = 15
# data_iter =  data.DataLoader(cifar_trainset, batch_size, shuffle=True)
# test_iter = data.DataLoader(cifar_testset, batch_size, shuffle=True)

print("Read dataset and create dataloaders - 5%")


def SpatialAveragePool(X):
    return torch.mean(X, dim=[2,3])


def init_weights(m):
    if type(m) == nn.Linear or type(m) == nn.Conv2d:
        torch.nn.init.xavier_uniform_(m.weight)         


loss = nn.CrossEntropyLoss()


class MakiNet(nn.Module):
    def __init__(self, conv_arch, num_classes, dropout_rate=0.0001):  # conv_arch: 
        super(MakiNet, self).__init__()
        self.out_classes = num_classes
        self.conv_arch = conv_arch
        k= 0
        for i, (num_conv, in_channels, out_channels) in enumerate(conv_arch):
            self.add_module(f"maki_block{i}", MakiBlock(num_conv, in_channels, out_channels, dropout_rate))
            # input_channels = out_channels
            # k = out_channels * (32-(2*len(conv_arch))) * (32-(2*len(conv_arch)))
            k = out_channels
        print(str(k) + " parameters")

        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(k, 75),
            nn.Dropout(p=dropout_rate),
            nn.ReLU(),
            nn.Linear(75, 25),
            nn.Dropout(p=dropout_rate),
            nn.ReLU(),
            nn.Linear(25, num_classes)
        )
        
    def forward(self, x):
        out = x
        # print(f"number of blocks: {len(self.conv_arch)}")
        for i in range(len(self.conv_arch)):
            out = self._modules[f"maki_block{i}"](out)
        out = SpatialAveragePool(out)
        out = self.classifier(out)
        return out
    

class MakiBlock(nn.Module):
    def __init__(self, num_conv, input_channels, output_channels, dropout_rate):
        super(MakiBlock, self).__init__()
        self.num_convs = num_conv
        self.linear = nn.Linear(input_channels, num_conv, bias=False)
        self.relu = nn.ReLU()
        #self.max = nn.MaxPool2d(kernel_size=3, padding=1, stride=1)
        #self.avg = nn.AvgPool2d(kernel_size=3, padding=1, stride=1)
        self.dropout = nn.Dropout(p=dropout_rate)
        
        for i in range(num_conv):
            # add convolution layer
            self.add_module(f"conv{i}", nn.Conv2d(input_channels, output_channels, kernel_size=5, padding=1, stride=1))
            # add batch norm layer
            self.add_module(f"batch_norm{i}", nn.BatchNorm2d(output_channels))


    def forward(self, x):
        # apply the linear model x, to a number of outputs.
        x = x.to(device)
        # Initial MLP part. 
        avg_out = SpatialAveragePool(x)
        avg_out = avg_out.to(device)
        
        lin_out = self.linear(avg_out)
        lin_out - self.dropout(lin_out)
        
        a = self.relu(lin_out)  # a vector.     
        
        
        total_output = []
        for j in range(self.num_convs):

            out = self._modules[f"conv{j}"](x)
            out = self._modules[f"batch_norm{j}"](out)
            out = self.dropout(out)
            out = self.relu(out)
            #  out = self.max(out)  # removing it, as shown ineffective.
            s = a[:, j].unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) * out
            total_output.append(s)
        
        total_output = torch.stack(total_output, dim=0)  
        out = torch.sum(total_output, dim=0) 
        return torch.Tensor(out)  
    
print("Create the model - 40%")


# def train_model(net, train_iter, test_iter, num_epochs, lr, wd=1e-9, device=device, param_dict=None):
def train_model(trail, study, device=device):
    gc.collect()
    torch.cuda.empty_cache()
    gpu_memory = torch.cuda.memory_allocated(device='cuda:0')
    print(f"GPU memory allocated: {gpu_memory}")
    # To be completed.
    try:
        batch_size = trail.suggest_int("batch_size", 32, 256)
        train_iter = data.DataLoader(cifar_trainset, batch_size, shuffle=True)
        test_iter = data.DataLoader(cifar_testset, batch_size, shuffle=True)

        # dropout_rate = trail.suggest_float("dropout_rate", 1e-5, 1e-1, log=True)
        dropout_rate = 0.15

        #number_of_layers = trail.suggest_int("number_of_layers", 3, 8)
        #number_of_channels = trail.suggest_int("number_of_channels", 50, 200)
        # number_of_layers = 4
        # number_of_channels = 10

        # num_conv = trail.suggest_int(3, 5)  # 3, try 12 next after this.
        num_conv = 3
        #model_arch = [
        #    [num_conv, 3, number_of_channels],  # num_conv, in_channels, out_channels
        #]
        #for i in range(number_of_layers):
        #    model_arch.append([num_conv, number_of_channels, number_of_channels])

        model_arch = [
            [3, 3, 120],  # num_conv, in_channels, out_channels
            [3, 120, 100],
            [3, 100, 80],
        ]
        net = MakiNet(model_arch, 10, dropout_rate=dropout_rate)
        net.to(device)
        #state_dict = torch.load(f"optuna_coursework_multi_arch_hyper_maki_net_4_10_0.713.params")
        #net.load_state_dict(state_dict)
        net.apply(init_weights)

        lr = trail.suggest_float("lr", 1e-5, 9e-1, log=True)
        # wd = trail.suggest_float("wd", 1e-9, 1e-1, log=True)
        wd=0
        optimizer = torch.optim.SGD(net.parameters(), lr=lr, weight_decay=wd)
        loss = nn.CrossEntropyLoss()
        timer = mu.Timer()

        num_epochs = trail.suggest_int("num_epochs", 20, 50)  # 10, 40

        metric = mu.Accumulator(3)  # train_loss, train_acc, num_examples
        train_loss = 0
        train_acc = 0
        for epoch in range(num_epochs):
            print(f"Epoch: {epoch}/ {num_epochs}")
            for i, (X, y) in enumerate(train_iter):
                timer.start()
                net.train()
                optimizer.zero_grad()
                X, y = X.to(device), y.to(device)
                y_hat = net(X)
                l = loss(y_hat, y)
                l.backward()
                optimizer.step()
                with torch.no_grad():
                    metric.add(l*X.shape[0], mu.accuracy(y_hat, y), X.shape[0])
                timer.stop()
                train_loss, train_acc = metric[0]/metric[2], metric[1]/metric[2]
                if (i+1) % 50 == 0:
                    print(f'batch {i+1}, train loss {train_loss:.3f}, train acc {train_acc:.3f}')
            test_acc = mu.evaluate_accuracy_gpu(net, test_iter)
            print(f'Test Accuracy for epoch {epoch+1} is {test_acc:.3f}')

            if epoch == 5 and test_acc <= 0.1:
            #     # Stop the trial if the test accuracy is less than 0.1 after 10 epochs. To save time.
                raise optuna.exceptions.TrialPruned()

        test_acc = mu.evaluate_accuracy_gpu(net, test_iter)
        test_acc_delta = test_acc - train_acc
        if test_acc_delta < -0.25:
            # overfitting of more than 25%, prune.
            raise optuna.exceptions.TrialPruned()

        try:
            if test_acc > study.best_trials[0].values[0]:
                torch.save(net.state_dict(), f"attempt6{test_acc:.3f}.params")
        except IndexError:
            print("No best trial yet.")
            torch.save(net.state_dict(), f"attempt6{test_acc:.3f}.params")
    except Exception as e:
        print("Exception occurred")
        return optuna.exceptions.OptunaError(f"Exception occurred during training. {e}")
    return test_acc  # , train_loss, test_acc_delta


if __name__ == "__main__":



    # model_arch = [
    #     [6, 3, 12],  # num_conv, in_channels, out_channels  max 73% no aug
    #     [4, 12, 15],
    #     [4, 15, 12],
    #     [5, 12, 9],
    # ]
    #
    # model_arch2 = [
    #     [3, 3, 5],  # num_conv, in_channels, out_channels
    #     [3, 5, 6],
    #     [3, 6, 3],
    #     # [2, 6, 3]
    # ]

    #study = optuna.create_study(study_name="attempt6", storage="sqlite:///db.sqlite3", directions=["maximize"])  # maximise the test accuracy.
    study = optuna.load_study(study_name="attempt6", storage="sqlite:///db.sqlite3")
    # print(f"Study Attributes: {study.user_attrs}")
    #print(f"{study.best_trials[0].values[0]} - {study.best_trials[0].params}")

    study.optimize(lambda trial: train_model(trial, study, device), n_trials=1000)  # 2 hours.

    # All task runs up to run 25, are with transformer simple model, not with data augmentation.

    # optuna-dashboard sqlite:///db.sqlite3


    # test_acc, train_loss, test_acc_delta