Wav2vec2-xlsr-Shemo-Ravdess

This model is a fine-tuned version of makhataei/emotion_recog on the minoosh/shEMO dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1736
  • Accuracy: 0.6080

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1422 1.0 224 1.1661 0.6246
1.0217 2.0 449 1.1937 0.6257
1.0559 3.0 674 1.2977 0.5856
1.0936 4.0 899 1.3626 0.5939
1.1228 5.0 1123 1.2982 0.5880
1.0318 6.0 1348 1.2040 0.6175
1.0672 7.0 1573 1.2251 0.6045
1.0632 8.0 1798 1.4452 0.5797
1.1499 9.0 2022 1.3601 0.5868
1.0777 10.0 2247 1.3385 0.5832
1.0781 11.0 2472 1.1732 0.5915
1.0678 12.0 2697 1.2847 0.5821
1.1707 13.0 2921 1.3588 0.6033
1.1455 14.0 3146 1.3306 0.5632
1.1142 15.0 3371 1.5357 0.5289
1.1206 16.0 3596 1.4326 0.5702
1.1422 17.0 3820 1.7375 0.5018
1.0812 18.0 4045 1.5080 0.5325
1.1203 19.0 4270 1.3482 0.5809
1.1119 20.0 4495 1.2645 0.5632
1.1494 21.0 4719 1.4513 0.5608
1.1657 22.0 4944 1.4032 0.5632
1.1381 23.0 5169 1.2126 0.5773
1.0927 24.0 5394 1.3380 0.5655
1.015 25.0 5618 1.2219 0.5927
1.0204 26.0 5843 1.2501 0.5939
1.008 27.0 6068 1.2044 0.5891
1.0234 28.0 6293 1.2707 0.5832
0.9675 29.0 6517 1.1381 0.6009
0.9978 30.0 6742 1.2326 0.5797
1.0122 31.0 6967 1.2166 0.5797
0.9453 32.0 7192 1.1262 0.6104
1.0142 33.0 7416 1.1846 0.6104
0.9738 34.0 7641 1.1193 0.6175
0.9176 35.0 7866 1.1634 0.5950
1.0274 36.0 8091 1.1692 0.6187
1.0281 37.0 8315 1.1404 0.6045
0.9439 38.0 8540 1.1726 0.5927
0.9435 39.0 8765 1.0951 0.6234
0.9281 40.0 8990 1.1170 0.6068
0.9538 41.0 9214 1.3379 0.5785
0.9625 42.0 9439 1.2126 0.5915
0.912 43.0 9664 1.3407 0.5679
0.9173 44.0 9889 1.1140 0.6269
0.8946 45.0 10113 1.2278 0.5998
0.9263 46.0 10338 1.4053 0.5490
0.9285 47.0 10563 1.2031 0.6116
0.9143 48.0 10788 1.3764 0.5927
0.9136 49.0 11012 1.2281 0.6033
0.8833 50.0 11237 1.1829 0.5962
0.9111 51.0 11462 1.2174 0.5797
0.9125 52.0 11687 1.2228 0.6068
0.9345 53.0 11911 1.1174 0.6187
0.9006 54.0 12136 1.2127 0.5998
0.9047 55.0 12361 1.1860 0.5974
0.8726 56.0 12586 1.3472 0.5608
0.8383 57.0 12810 1.3870 0.5596
0.8635 58.0 13035 1.2173 0.5962
0.8488 59.0 13260 1.1971 0.5962
0.9105 60.0 13485 1.2144 0.5986
0.8562 61.0 13709 1.2294 0.5880
0.8683 62.0 13934 1.1234 0.6092
0.8944 63.0 14159 1.2112 0.5868
0.8509 64.0 14384 1.5180 0.5537
0.8356 65.0 14608 1.2713 0.5726
0.854 66.0 14833 1.2937 0.5797
0.8977 67.0 15058 1.2866 0.5844
0.8984 68.0 15283 1.2556 0.5880
0.8935 69.0 15507 1.3198 0.5868
0.8521 70.0 15732 1.2408 0.5986
0.8971 71.0 15957 1.2107 0.5986
0.8621 72.0 16182 1.2558 0.5797
0.8549 73.0 16406 1.2017 0.6021
0.8362 74.0 16631 1.3402 0.5915
0.8826 75.0 16856 1.2788 0.6009
0.8518 76.0 17081 1.2311 0.6198
0.8495 77.0 17305 1.1504 0.6340
0.8547 78.0 17530 1.2002 0.6080
0.8794 79.0 17755 1.2842 0.5821
0.893 80.0 17980 1.2378 0.5962
0.8451 81.0 18204 1.1525 0.6175
0.8368 82.0 18429 1.2184 0.6068
0.836 83.0 18654 1.1771 0.6033
0.8364 84.0 18879 1.2725 0.5844
0.7702 85.0 19103 1.2220 0.6057
0.8539 86.0 19328 1.1542 0.6104
0.8075 87.0 19553 1.2943 0.5927
0.7758 88.0 19778 1.2257 0.5868
0.782 89.0 20002 1.1406 0.6246
0.7952 90.0 20227 1.2678 0.5998
0.7911 91.0 20452 1.1540 0.6222
0.7845 92.0 20677 1.1804 0.6187
0.8066 93.0 20901 1.1764 0.6210
0.8042 94.0 21126 1.1706 0.6068
0.7981 95.0 21351 1.1516 0.6175
0.7585 96.0 21576 1.1980 0.5998
0.7576 97.0 21800 1.1870 0.6092
0.7908 98.0 22025 1.1770 0.6080
0.7646 99.0 22250 1.1745 0.6092
0.7791 99.67 22400 1.1736 0.6080

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
33
Inference API
Unable to determine this model’s pipeline type. Check the docs .