Edit model card

gpt2-maptask-GF

This model is a fine-tuned version of gpt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7116

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss
3.0139 0.84 1000 2.9045
2.7923 1.67 2000 2.7825
2.6799 2.51 3000 2.7264
2.607 3.34 4000 2.6917
2.55 4.18 5000 2.6708
2.4988 5.01 6000 2.6570
2.4697 5.85 7000 2.6480
2.426 6.68 8000 2.6452
2.4031 7.52 9000 2.6404
2.3654 8.35 10000 2.6416
2.3471 9.19 11000 2.6418
2.3195 10.03 12000 2.6444
2.2969 10.86 13000 2.6455
2.2767 11.7 14000 2.6489
2.2608 12.53 15000 2.6525
2.2381 13.37 16000 2.6563
2.2228 14.2 17000 2.6602
2.2037 15.04 18000 2.6641
2.1911 15.87 19000 2.6684
2.1742 16.71 20000 2.6739
2.1626 17.54 21000 2.6776
2.1504 18.38 22000 2.6800
2.143 19.21 23000 2.6832
2.1277 20.05 24000 2.6892
2.1178 20.89 25000 2.6924
2.1128 21.72 26000 2.6952
2.1009 22.56 27000 2.6978
2.0957 23.39 28000 2.7006
2.0885 24.23 29000 2.7024
2.0849 25.06 30000 2.7065
2.0794 25.9 31000 2.7075
2.0783 26.73 32000 2.7090
2.0698 27.57 33000 2.7106
2.0718 28.4 34000 2.7109
2.069 29.24 35000 2.7116

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.