General description
All of Ultralytics' Yolo V11 models model fined tuned for billboard detection using the Billboard dataset.
This model was created with 100 epochs using CUDA 12.4 and Pytorch 2.6.0.
Best Metrics Comparison
Model | Precision (Epoch) | Recall (Epoch) | mAP50 (Epoch) | mAP50-95 (Epoch) |
---|---|---|---|---|
YOLO_11n | 0.73613 (epoch: 66) | 0.67308 (epoch: 88) | 0.70351 (epoch: 87) | 0.43033 (epoch: 80) |
YOLO_11s | 0.7225 (epoch: 98) | 0.67735 (epoch: 81) | 0.70855 (epoch: 76) | 0.43518 (epoch: 77) |
YOLO_11m | 0.73249 (epoch: 80) | 0.6745 (epoch: 73) | 0.71053 (epoch: 87) | 0.43404 (epoch: 62) |
YOLO_11l | 0.74729 (epoch: 98) | 0.68174 (epoch: 49) | 0.71778 (epoch: 75) | 0.44731 (epoch: 89) |
YOLO_11x | 0.74299 (epoch: 94) | 0.6688 (epoch: 80) | 0.7113 (epoch: 60) | 0.4437 (epoch: 89) |
Further results can be found in Results Folder.
Created by Mark Colley.
- Downloads last month
- 89
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support object-detection models for ultralytics library.
Model tree for maco018/billboard-detection-Yolo11
Base model
Ultralytics/YOLO11