File size: 8,740 Bytes
eb12945 3402a47 f7d93c3 eb12945 884b37c 25ab601 b171572 479296a 25ab601 1ff8d2c a1e1c15 1ff8d2c 55d4e28 1ff8d2c 3aeb07c 22ce472 3aeb07c 1ff8d2c 479296a 1ff8d2c 479296a 1ff8d2c 479296a 1ff8d2c 479296a 1ff8d2c 479296a 1ff8d2c 479296a 1ff8d2c 479296a 1ff8d2c 479296a 1ff8d2c 479296a 53aa454 479296a 53aa454 f7d93c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
---
language:
- ja
- en
- zh
license: apache-2.0
model-index:
- name: laser-polyglot-4x7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.16
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.98
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.88
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 55.47
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
---
# Polyglot-4x7b-24b
![polyglot](polyglot.png)
Polyglot-4x7b is a Mixture of Experts approach to a multilingual model.
This project is an experiment to see if each expert can be of a different language. The answer is yes.
The model is a merge of models that are capable of Chinese and Japanese output.
+ teknium/OpenHermes-2.5-Mistral-7B
+ oshizo/japanese-e5-mistral-7b_slerp
+ cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
+ s3nh/Mistral-7B-Evol-Instruct-Chinese
TODO:
1. [] polyglot tokenizer
## Other polyglot models
+ [macadeliccc/Polyglot-8x7b-v0.1](https://huggingface.co/macadeliccc/Polyglot-8x7b-v0.1) (adds 3 more languages)
# Code Example
Inference [Colab](https://colab.research.google.com/drive/1tYSb63IKZDsiQ5BIJU8Oc92phxugAmB3?usp=sharing)
Live demo available on [Spaces](https://huggingface.co/spaces/macadeliccc/polyglot-4x7b-chat?logs=build)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/laser-polyglot-4x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
# Example prompts in different languages
english_prompt = "Write a quicksort algorithm in python"
chinese_prompt = "用Python写一个快速排序算法"
japanese_prompt = "Pythonでクイックソートアルゴリズムを書いてください"
# Generate and print responses for each language
print("English Response:")
print(generate_response(english_prompt), "\n")
print("Chinese Response:")
print(generate_response(chinese_prompt), "\n")
print("Japanese Response:")
print(generate_response(japanese_prompt), "\n")
```
## Example Output
English:
Write a quicksort algorithm in python.
```python
def quicksort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
less = [i for i in arr[1:] if i <= pivot]
greater = [i for i in arr[1:] if i > pivot]
return quicksort(less) + [pivot] + quicksort(greater)
arr = [5, 2, 9, 1, 5, 7, 4, 8, 6, 3]
print(quicksort(arr))
```
This is a simple implementation of the quicksort algorithm in python. The function `quicksort` takes an array as input and returns a sorted array. The algorithm works by selecting a pivot element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The process is then repeated recursively on the sub-arrays until the entire array is sorted.
Chinese Response:
用Python写一个快速排序算法
```python
def quick_sort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
less = [i for i in arr[1:] if i <= pivot]
greater = [i for i in arr[1:] if i > pivot]
return quick_sort(less) + [pivot] + quick_sort(greater)
arr = [3, 5, 2, 1, 4, 6, 8, 7]
print(quick_sort(arr))
```
这个程序的时间复杂度为O(nlogn),空间复杂度为O(n)。
Japanese Response:
Pythonでクイックソートアルゴリズムを書いてください。
```python
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]
return quicksort(left) + [pivot] + quicksort(right)
print(quicksort([3,6,8,10,1,5,9,2,4,7]))
```
このコードはクイックソートアルゴリズムを実装しています。クイックソートは一種の分割と conquers アルゴリズムで、配列を分割し、それぞれの部分配列を再帰的にソートします。
この実装では、配列の最初の要素をピボットとして使用します。そして、配列を2つの
# Evaluations
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml |none | 0|acc |0.5495|± |0.0145|
| | |none | 0|acc_norm|0.5794|± |0.0144|
|arc_easy |Yaml |none | 0|acc |0.8304|± |0.0077|
| | |none | 0|acc_norm|0.8068|± |0.0081|
|boolq |Yaml |none | 0|acc |0.8749|± |0.0058|
|hellaswag |Yaml |none | 0|acc |0.6276|± |0.0048|
| | |none | 0|acc_norm|0.8157|± |0.0039|
|openbookqa |Yaml |none | 0|acc |0.3180|± |0.0208|
| | |none | 0|acc_norm|0.4460|± |0.0223|
|piqa |Yaml |none | 0|acc |0.8139|± |0.0091|
| | |none | 0|acc_norm|0.8237|± |0.0089|
|winogrande |Yaml |none | 0|acc |0.7419|± |0.0123|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__laser-polyglot-4x7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |65.79|
|AI2 Reasoning Challenge (25-Shot)|64.16|
|HellaSwag (10-Shot) |84.98|
|MMLU (5-Shot) |63.88|
|TruthfulQA (0-shot) |55.47|
|Winogrande (5-shot) |77.82|
|GSM8k (5-shot) |48.45|
|