macadeliccc commited on
Commit
479296a
1 Parent(s): 53aa454

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -33
README.md CHANGED
@@ -5,7 +5,9 @@ license: apache-2.0
5
 
6
  ![polyglot](polyglot.png)
7
 
8
- This model is a Mixture of Experts approach to a multilingual model.
 
 
9
 
10
  The model is a merge of models that are capable of Chinese and Japanese output.
11
 
@@ -20,49 +22,34 @@ The model is a merge of models that are capable of Chinese and Japanese output.
20
  Inference [Colab](https://colab.research.google.com/drive/1tYSb63IKZDsiQ5BIJU8Oc92phxugAmB3?usp=sharing)
21
 
22
  ```python
23
- # Import necessary libraries
24
- from transformers import AutoTokenizer, AutoModelForCausalLM
25
-
26
- # Load tokenizer and model
27
- tokenizer = AutoTokenizer.from_pretrained("macadeliccc/laser-polyglot-4x7b")
28
- model = AutoModelForCausalLM.from_pretrained("macadeliccc/laser-polyglot-4x7b",load_in_4bit=True)
29
 
30
- def generate_response(prompt, max_length=50, num_return_sequences=1, temperature=1.0, top_k=50, top_p=1.0):
31
  """
32
- Generate a response from the model based on the input prompt and hyperparameters.
33
 
34
  Args:
35
  prompt (str): Prompt for the model.
36
- max_length (int): Maximum length of the model's response.
37
- num_return_sequences (int): Number of response sequences to generate.
38
- temperature (float): Sampling temperature for model generation.
39
- top_k (int): The number of highest probability vocabulary tokens to keep for top-k filtering.
40
- top_p (float): If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.
41
 
42
  Returns:
43
  str: The generated response from the model.
44
  """
45
- messages = [
46
- {"role": "system", "content": "You are Polyglot, a multilingual AI assistant fluent in English, Chinese and Japanese"},
47
- {"role": "user", "content": prompt}
48
- ]
49
-
50
- # Apply chat template to input messages
51
- gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
52
-
53
- # Generate a response
54
- output = model.generate(**gen_input,
55
- max_length=max_length,
56
- num_return_sequences=num_return_sequences,
57
- temperature=temperature,
58
- top_k=top_k,
59
- top_p=top_p)
60
 
61
  # Decode the generated tokens to a string
62
- response = tokenizer.decode(output[0], skip_special_tokens=True)
63
 
64
  return response
65
 
 
 
 
 
 
66
  # Example prompts in different languages
67
  english_prompt = "Write a quicksort algorithm in python"
68
  chinese_prompt = "用Python写一个快速排序算法"
@@ -70,15 +57,78 @@ japanese_prompt = "Pythonでクイックソートアルゴリズムを書いて
70
 
71
  # Generate and print responses for each language
72
  print("English Response:")
73
- print(generate_response(english_prompt, max_length=100, temperature=0.8), "\n")
74
 
75
  print("Chinese Response:")
76
- print(generate_response(chinese_prompt, max_length=100, temperature=0.8), "\n")
77
 
78
  print("Japanese Response:")
79
- print(generate_response(japanese_prompt, max_length=100, temperature=0.8), "\n")
 
80
  ```
81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  # Evaluations
83
 
84
  | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
 
5
 
6
  ![polyglot](polyglot.png)
7
 
8
+ Polyglot-4x7b is a Mixture of Experts approach to a multilingual model.
9
+
10
+ This project is an experiment to see if each expert can be of a different language. The answer is yes.
11
 
12
  The model is a merge of models that are capable of Chinese and Japanese output.
13
 
 
22
  Inference [Colab](https://colab.research.google.com/drive/1tYSb63IKZDsiQ5BIJU8Oc92phxugAmB3?usp=sharing)
23
 
24
  ```python
25
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
26
 
27
+ def generate_response(prompt):
28
  """
29
+ Generate a response from the model based on the input prompt.
30
 
31
  Args:
32
  prompt (str): Prompt for the model.
 
 
 
 
 
33
 
34
  Returns:
35
  str: The generated response from the model.
36
  """
37
+ # Tokenize the input prompt
38
+ inputs = tokenizer(prompt, return_tensors="pt")
39
+
40
+ # Generate output tokens
41
+ outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
 
 
 
 
 
 
 
 
 
 
42
 
43
  # Decode the generated tokens to a string
44
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
45
 
46
  return response
47
 
48
+ # Load the model and tokenizer
49
+ model_id = "macadeliccc/laser-polyglot-4x7b"
50
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
51
+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
52
+
53
  # Example prompts in different languages
54
  english_prompt = "Write a quicksort algorithm in python"
55
  chinese_prompt = "用Python写一个快速排序算法"
 
57
 
58
  # Generate and print responses for each language
59
  print("English Response:")
60
+ print(generate_response(english_prompt), "\n")
61
 
62
  print("Chinese Response:")
63
+ print(generate_response(chinese_prompt), "\n")
64
 
65
  print("Japanese Response:")
66
+ print(generate_response(japanese_prompt), "\n")
67
+
68
  ```
69
 
70
+ ## Example Output
71
+ English:
72
+
73
+ Write a quicksort algorithm in python.
74
+
75
+ ```python
76
+ def quicksort(arr):
77
+ if len(arr) <= 1:
78
+ return arr
79
+ else:
80
+ pivot = arr[0]
81
+ less = [i for i in arr[1:] if i <= pivot]
82
+ greater = [i for i in arr[1:] if i > pivot]
83
+ return quicksort(less) + [pivot] + quicksort(greater)
84
+
85
+ arr = [5, 2, 9, 1, 5, 7, 4, 8, 6, 3]
86
+ print(quicksort(arr))
87
+ ```
88
+
89
+ This is a simple implementation of the quicksort algorithm in python. The function `quicksort` takes an array as input and returns a sorted array. The algorithm works by selecting a pivot element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The process is then repeated recursively on the sub-arrays until the entire array is sorted.
90
+
91
+ Chinese Response:
92
+
93
+ 用Python写一个快速排序算法
94
+
95
+ ```python
96
+ def quick_sort(arr):
97
+ if len(arr) <= 1:
98
+ return arr
99
+ else:
100
+ pivot = arr[0]
101
+ less = [i for i in arr[1:] if i <= pivot]
102
+ greater = [i for i in arr[1:] if i > pivot]
103
+ return quick_sort(less) + [pivot] + quick_sort(greater)
104
+
105
+ arr = [3, 5, 2, 1, 4, 6, 8, 7]
106
+ print(quick_sort(arr))
107
+ ```
108
+ 这个程序的时间复杂度为O(nlogn),空间复杂度为O(n)。
109
+
110
+ Japanese Response:
111
+
112
+ Pythonでクイックソートアルゴリズムを書いてください。
113
+
114
+ ```python
115
+ def quicksort(arr):
116
+ if len(arr) <= 1:
117
+ return arr
118
+ pivot = arr[0]
119
+ left = [x for x in arr[1:] if x < pivot]
120
+ right = [x for x in arr[1:] if x >= pivot]
121
+ return quicksort(left) + [pivot] + quicksort(right)
122
+
123
+ print(quicksort([3,6,8,10,1,5,9,2,4,7]))
124
+ ```
125
+
126
+ このコードはクイックソートアルゴリズムを実装しています。クイックソートは一種の分割と conquers アルゴリズムで、配列を分割し、それぞれの部分配列を再帰的にソートします。
127
+
128
+ この実装では、配列の最初の要素をピボットとして使用します。そして、配列を2つの
129
+
130
+
131
+
132
  # Evaluations
133
 
134
  | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|