DeBERTa (1.5B) fixed version
This is deberta-v2-xxlarge updated to implement the AutoModelForCausalLM
class, enabling it to generate text. This implementation is based on our paper "BERTs are Generative In-Context Learners".
This repository also fixes three bugs in the original HF implementation of DeBERTa:
- We fixed the incorrect name of the output embedding weights in the checkpoint file;
- We fixed the implementation of the enhanced mask decoder (EMD), based on the original GitHub repository;
- We clamp the positional embeddings so that they work with long sequence lengths.
Example code
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ltg/deberta-xxlarge-fixed", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("ltg/deberta-xxlarge-fixed", trust_remote_code=True).cuda().eval()
prompt = """German: Hallo, wie geht es Ihnen heute?
English:"""
prompt = prompt.replace('\n', '\\n ')
input_ids = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.cuda()
prediction = model.generate(
input_ids,
num_beams=4,
do_sample=False,
use_cache=None,
max_new_tokens=64,
eos_token_id=tokenizer(".\\", add_special_tokens=False).input_ids[1:]
)
prediction = prediction[0, input_ids.size(1):]
prediction = tokenizer.decode(prediction).rstrip('\\')
# Expected output: "Hello, how are you doing today?"
print(prediction)
Citation
If you find DeBERTa useful for your work, please cite the following paper:
@misc{samuel2024berts,
title={{BERTs} are Generative In-Context Learners},
author={David Samuel},
year={2024},
eprint={2406.04823},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.04823}
}
@inproceedings{he2021deberta,
title={{DeBERTa}: Decoding-enhanced {BERT} with disentangled attention},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
- Downloads last month
- 67
Inference API (serverless) does not yet support model repos that contain custom code.