Edit model card

Whisper Small English

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 en dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3107
  • Wer: 12.0213

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 40000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1577 0.06 2500 0.4077 16.2349
0.2244 0.12 5000 0.3698 14.7325
0.3231 0.19 7500 0.3434 13.7448
0.2536 0.25 10000 0.3406 13.4981
0.2234 0.31 12500 0.3510 14.1304
0.1989 0.38 15000 0.3388 13.6394
0.2449 0.44 17500 0.3394 13.4293
0.2302 0.5 20000 0.3198 12.5020
0.213 0.56 22500 0.3167 12.4904
0.2395 0.62 25000 0.3145 12.7533
0.1152 0.69 27500 0.3181 12.6087
0.0901 1.01 30000 0.3134 12.3240
0.1595 1.07 32500 0.3107 12.0213
0.1249 1.13 35000 0.3131 12.0869
0.1404 1.2 37500 0.3117 12.4635
0.1812 1.26 40000 0.3104 12.1415

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.1.dev0
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lorenzoncina/whisper-small-en-4-epochs

Evaluation results