Pythia-1.4b DPO finetuned using original DPO code with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-1.4b for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-1.4b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.2816 ± 0.0131
none 0 acc_norm 0.3123 ± 0.0135
arc_easy 1 none 0 acc 0.6229 ± 0.0099
none 0 acc_norm 0.5459 ± 0.0102
boolq 2 none 0 acc 0.6229 ± 0.0085
hellaswag 1 none 0 acc 0.4191 ± 0.0049
none 0 acc_norm 0.5383 ± 0.0050
lambada_openai 1 none 0 perplexity 6.4790 ± 0.1947
none 0 acc 0.5674 ± 0.0069
openbookqa 1 none 0 acc 0.2280 ± 0.0188
none 0 acc_norm 0.3360 ± 0.0211
piqa 1 none 0 acc 0.7122 ± 0.0106
none 0 acc_norm 0.7214 ± 0.0105
sciq 1 none 0 acc 0.8480 ± 0.0114
none 0 acc_norm 0.7840 ± 0.0130
wikitext 2 none 0 word_perplexity 16.4022 ± N/A
none 0 byte_perplexity 1.6873 ± N/A
none 0 bits_per_byte 0.7547 ± N/A
winogrande 1 none 0 acc 0.5959 ± 0.0138

hf (pretrained=lomahony/pythia-1.4b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.3089 ± 0.0135
none 5 acc_norm 0.3353 ± 0.0138
arc_easy 1 none 5 acc 0.6423 ± 0.0098
none 5 acc_norm 0.6334 ± 0.0099
boolq 2 none 5 acc 0.6291 ± 0.0084
hellaswag 1 none 5 acc 0.4124 ± 0.0049
none 5 acc_norm 0.5347 ± 0.0050
lambada_openai 1 none 5 perplexity 9.7688 ± 0.3083
none 5 acc 0.4904 ± 0.0070
openbookqa 1 none 5 acc 0.2260 ± 0.0187
none 5 acc_norm 0.3240 ± 0.0210
piqa 1 none 5 acc 0.7095 ± 0.0106
none 5 acc_norm 0.7165 ± 0.0105
sciq 1 none 5 acc 0.9140 ± 0.0089
none 5 acc_norm 0.9050 ± 0.0093
wikitext 2 none 5 word_perplexity 16.4022 ± N/A
none 5 byte_perplexity 1.6873 ± N/A
none 5 bits_per_byte 0.7547 ± N/A
winogrande 1 none 5 acc 0.5612 ± 0.0139
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lomahony/pythia-1.4b-helpful-dpo

Collection including lomahony/pythia-1.4b-helpful-dpo