Model Card of lmqg/mt5-small-itquad-ae

This model is fine-tuned version of google/mt5-small for answer extraction on the lmqg/qg_itquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="it", model="lmqg/mt5-small-itquad-ae")

# model prediction
answers = model.generate_a("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-itquad-ae")
output = pipe("<hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")

Evaluation

Score Type Dataset
AnswerExactMatch 55.07 default lmqg/qg_itquad
AnswerF1Score 70.41 default lmqg/qg_itquad
BERTScore 90.01 default lmqg/qg_itquad
Bleu_1 38.56 default lmqg/qg_itquad
Bleu_2 32.74 default lmqg/qg_itquad
Bleu_3 28.58 default lmqg/qg_itquad
Bleu_4 24.72 default lmqg/qg_itquad
METEOR 40.39 default lmqg/qg_itquad
MoverScore 80.28 default lmqg/qg_itquad
ROUGE_L 43.93 default lmqg/qg_itquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_itquad
  • dataset_name: default
  • input_types: ['paragraph_sentence']
  • output_types: ['answer']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 17
  • batch: 32
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 2
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lmqg/mt5-small-itquad-ae

Evaluation results