Model Card of lmqg/mt5-small-esquad-qg

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg")

# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")

Evaluation

Score Type Dataset
BERTScore 84.07 default lmqg/qg_esquad
Bleu_1 26.03 default lmqg/qg_esquad
Bleu_2 17.75 default lmqg/qg_esquad
Bleu_3 12.88 default lmqg/qg_esquad
Bleu_4 9.61 default lmqg/qg_esquad
METEOR 22.71 default lmqg/qg_esquad
MoverScore 59.06 default lmqg/qg_esquad
ROUGE_L 24.62 default lmqg/qg_esquad
  • Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score Type Dataset
QAAlignedF1Score (BERTScore) 89.43 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 63.73 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 89.44 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 63.75 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 89.41 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 63.72 default lmqg/qg_esquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 79.89 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 54.82 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 77.46 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 53.31 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 82.56 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 56.52 default lmqg/qg_esquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_esquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 16
  • batch: 64
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lmqg/mt5-small-esquad-qg

Evaluation results

  • BLEU4 (Question Generation) on lmqg/qg_esquad
    self-reported
    9.610
  • ROUGE-L (Question Generation) on lmqg/qg_esquad
    self-reported
    24.620
  • METEOR (Question Generation) on lmqg/qg_esquad
    self-reported
    22.710
  • BERTScore (Question Generation) on lmqg/qg_esquad
    self-reported
    84.070
  • MoverScore (Question Generation) on lmqg/qg_esquad
    self-reported
    59.060
  • QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquad
    self-reported
    89.430
  • QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquad
    self-reported
    89.410
  • QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquad
    self-reported
    89.440
  • QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquad
    self-reported
    63.730
  • QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] on lmqg/qg_esquad
    self-reported
    63.720