BigWeave v33 105b
The BigWeave models aim to experimentally identify merge settings for increasing model performance. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared.
Prompting Format
llamav3
Merge process
This is a self-merge of meta-llama/Meta-Llama-3-70B-Instruct. Middle layers are duplicated and various matrices are scaled according to the template by jukofyork as shown here: https://github.com/arcee-ai/mergekit/issues/198#issuecomment-2079950009
Merge configuration:
const_tag: &MODEL meta-llama/Meta-Llama-3-70B-Instruct
const_tag: &RESIDUAL_SCALE_FACTOR 0.5
const_tag: &QK_ATTENUATION_FACTOR 0.7071067812
const_tag: &OUT_FACTOR 0.9
scale-filter-env: &scale_filter_env
parameters:
scale:
- filter: o_proj
value: *RESIDUAL_SCALE_FACTOR
- filter: down_proj
value: *RESIDUAL_SCALE_FACTOR
- filter: q_proj
value: *QK_ATTENUATION_FACTOR
- filter: k_proj
value: *QK_ATTENUATION_FACTOR
- filter: v_proj
value: *OUT_FACTOR
- filter: up_proj
value: *OUT_FACTOR
- value: 1.0
slices:
- sources:
- model: *MODEL
layer_range: [0, 19]
- sources:
- model: *MODEL
layer_range: [19, 20]
<<: *scale_filter_env
- sources:
- model: *MODEL
layer_range: [10, 29]
- sources:
- model: *MODEL
layer_range: [29, 30]
<<: *scale_filter_env
- sources:
- model: *MODEL
layer_range: [20, 39]
- sources:
- model: *MODEL
layer_range: [39, 40]
<<: *scale_filter_env
- sources:
- model: *MODEL
layer_range: [30, 49]
- sources:
- model: *MODEL
layer_range: [49, 50]
<<: *scale_filter_env
- sources:
- model: *MODEL
layer_range: [40, 80]
merge_method: passthrough
dtype: float16
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for llmixer/BigWeave-v33-105b
Base model
meta-llama/Meta-Llama-3-70B
Finetuned
meta-llama/Meta-Llama-3-70B-Instruct