Taka008's picture
Create README.md
95897a8 verified
|
raw
history blame
10.5 kB
metadata
license: other
license_name: llm-jp-3-172b-instruct3-tou
license_link: https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3/raw/main/LICENSE_ja
language:
  - en
  - ja
programming_language:
  - C
  - C++
  - C#
  - Go
  - Java
  - JavaScript
  - Lua
  - PHP
  - Python
  - Ruby
  - Rust
  - Scala
  - TypeScript
pipeline_tag: text-generation
library_name: transformers
inference: false

llm-jp-3-172b-instruct3

This repository provides large language models developed by the Research and Development Center for Large Language Models at the National Institute of Informatics.

The development was partially supported by GENIAC.

Checkpoints format: Hugging Face Transformers

Required Libraries and Their Versions

  • torch>=2.3.0
  • transformers>=4.40.1
  • tokenizers>=0.19.1
  • accelerate>=0.29.3
  • flash-attn>=2.5.8

Usage

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-172b-instruct3")
model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-172b-instruct3", device_map="auto", torch_dtype=torch.bfloat16)
chat = [
    {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
    {"role": "user", "content": "自然言語処理とは何か"},
]
tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device)
with torch.no_grad():
    output = model.generate(
        tokenized_input,
        max_new_tokens=100,
        do_sample=True,
        top_p=0.95,
        temperature=0.7,
        repetition_penalty=1.05,
    )[0]
print(tokenizer.decode(output))

Model Details

  • Model type: Transformer-based Language Model
  • Total seen tokens::
    • llm-jp-3-1.8b: 2.1T
    • llm-jp-3-3.7b: 2.1T
    • llm-jp-3-13b: 2.1T
    • llm-jp-3-172b-beta1: 0.7T
    • llm-jp-3-172b-beta2: 1.4T
    • llm-jp-3-172b: 2.1T
Params Layers Hidden size Heads Context length Embedding parameters Non-embedding parameters
1.8b 24 2048 16 4096 407,498,752 1,459,718,144
3.7b 28 3072 24 4096 611,248,128 3,171,068,928
13b 40 5120 40 4096 1,018,746,880 12,688,184,320
172b 96 12288 96 4096 2,444,992,512 169,947,181,056

Tokenizer

The tokenizer of this model is based on huggingface/tokenizers Unigram byte-fallback model. The vocabulary entries were converted from llm-jp-tokenizer v3.0. Please refer to README.md of llm-jp-tokenizer for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).

Datasets

Pre-training

The models have been pre-trained using a blend of the following datasets.

Language Dataset Tokens
Japanese Wikipedia 2.6B
Common Crawl 762.8B
WARP/PDF 237.3B
WARP/HTML 2.7B
Kaken 1.8B
English Wikipedia 4.7B
Dolma/CC-head 608.5B
Dolma/C4 181.6B
Dolma/Reddit 83.1B
Dolma/PeS2o 62.9B
Dolma/Gutenberg 5.5B
Dolma/Wiki 3.9B
Code The Stack 114.1B
Chinese Wikipedia 0.8B
Korean Wikipedia 0.3B

Post-training

We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization.

Supervised Fine-tuning

The datasets used for supervised fine-tuning are as follows:

Language Dataset Description
Japanese ichikara-instruction-004-002 A manually constructed Japanese instruction dataset.
answer-carefully-002 A manually constructed instruction dataset focusing on LLMs' safety.
ichikara-instruction-format A small subset of the ichikara-instruction dataset, edited with some constraints on the output format.
AutoMultiTurnByCalm3-22B A synthetic instruction dataset.
ramdom-to-fixed-multiturn-Calm3 A synthetic instruction dataset.
wizardlm8x22b-logical-math-coding-sft-ja A synthetic instruction dataset. We used a sampled subset.
wizardlm8x22b-logical-math-coding-sft_additional-ja A synthetic instruction dataset. We used a sampled subset.
magpie-sft-v1.0 A synthetic instruction dataset we created.
English Daring-Anteater -
FLAN We used a sampled subset.
Japanese & English Synthetic-JP-EN-Coding-Dataset-567k A synthetic instruction dataset. We used a sampled subset.

Direct Preference Optimization

We used synthetic preference data to improve both the helpfulness and harmlessness of the LLM. The datasets will be made available soon.

Evaluation

llm-jp-eval (v1.4.1)

We evaluated the models using 100 examples from the dev split. Note that we skipped the CG (Code Generation) task.

Model name average EL FA HE MC MR MT NLI QA RC SUM
llm-jp-3-172b-beta1 0.5174 0.4460 0.2556 0.3700 0.6400 0.6100 0.8265 0.5600 0.5720 0.8505 0.0434
llm-jp-3-172b-beta1-instruct 0.5700 0.4306 0.2292 0.4350 0.8433 0.6200 0.8228 0.6820 0.5873 0.8964 0.1529
llm-jp-3-172b-beta2 0.5422 0.3337 0.2725 0.4700 0.7767 0.6900 0.8283 0.5960 0.6133 0.8380 0.0037
llm-jp-3-172b-beta2-instruct2 0.6022 0.5470 0.2665 0.5100 0.8600 0.7000 0.8392 0.6800 0.6346 0.8770 0.1076
llm-jp-3-172b 0.5431 0.4077 0.2662 0.5150 0.7633 0.6700 0.8227 0.5740 0.5686 0.8289 0.0148
llm-jp-3-172b-instruct3 0.6130 0.5173 0.2711 0.5700 0.8733 0.7300 0.8437 0.7280 0.6012 0.8829 0.1121

Japanese MT Bench

We evaluated the models using gpt-4-0613. Please see the codes for details.

Model name average coding extraction humanities math reasoning roleplay stem writing
llm-jp-3-172b-beta1-instruct 5.14 2.90 5.30 8.80 2.15 2.45 6.95 7.45 5.15
llm-jp-3-172b-beta2-instruct2 6.72 4.10 6.90 7.60 4.00 6.35 8.70 7.95 8.15
llm-jp-3-172b-instruct3 7.57 4.85 8.55 9.56 3.75 7.6 8.1 8.95 9.2

Risks and Limitations

The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

Send Questions to

llm-jp(at)nii.ac.jp

License

See the LICENSE file.

Model Card Authors

The names are listed in alphabetical order.

Hirokazu Kiyomaru and Takashi Kodama.