Taka008 commited on
Commit
95897a8
·
verified ·
1 Parent(s): 47c3582

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +205 -0
README.md ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: llm-jp-3-172b-instruct3-tou
4
+ license_link: https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3/raw/main/LICENSE_ja
5
+ language:
6
+ - en
7
+ - ja
8
+ programming_language:
9
+ - C
10
+ - C++
11
+ - C#
12
+ - Go
13
+ - Java
14
+ - JavaScript
15
+ - Lua
16
+ - PHP
17
+ - Python
18
+ - Ruby
19
+ - Rust
20
+ - Scala
21
+ - TypeScript
22
+ pipeline_tag: text-generation
23
+ library_name: transformers
24
+ inference: false
25
+ ---
26
+ # llm-jp-3-172b-instruct3
27
+
28
+ This repository provides large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/).
29
+
30
+ The development was partially supported by [GENIAC](https://www.meti.go.jp/policy/mono_info_service/geniac/index.html).
31
+
32
+ | Model Variants |
33
+ | :--- |
34
+ | [llm-jp-3-1.8b](https://huggingface.co/llm-jp/llm-jp-3-1.8b) |
35
+ | [llm-jp-3-1.8b-instruct](https://huggingface.co/llm-jp/llm-jp-3-1.8b-instruct) |
36
+ | [llm-jp-3-3.7b](https://huggingface.co/llm-jp/llm-jp-3-3.7b) |
37
+ | [llm-jp-3-3.7b-instruct](https://huggingface.co/llm-jp/llm-jp-3-3.7b-instruct) |
38
+ | [llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b) |
39
+ | [llm-jp-3-13b-instruct](https://huggingface.co/llm-jp/llm-jp-3-13b-instruct) |
40
+ | [llm-jp-3-172b-beta1](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1) |
41
+ | [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) |
42
+ | [llm-jp-3-172b-beta2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2) |
43
+ | [llm-jp-3-172b-beta2-instruct2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2-instruct2) |
44
+ | [llm-jp-3-172b](https://huggingface.co/llm-jp/llm-jp-3-172b) |
45
+ | [llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) |
46
+
47
+
48
+ Checkpoints format: Hugging Face Transformers
49
+
50
+
51
+ ## Required Libraries and Their Versions
52
+
53
+ - torch>=2.3.0
54
+ - transformers>=4.40.1
55
+ - tokenizers>=0.19.1
56
+ - accelerate>=0.29.3
57
+ - flash-attn>=2.5.8
58
+
59
+ ## Usage
60
+
61
+ ```python
62
+ import torch
63
+ from transformers import AutoTokenizer, AutoModelForCausalLM
64
+ tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-172b-instruct3")
65
+ model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-172b-instruct3", device_map="auto", torch_dtype=torch.bfloat16)
66
+ chat = [
67
+ {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
68
+ {"role": "user", "content": "自然言語処理とは何か"},
69
+ ]
70
+ tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device)
71
+ with torch.no_grad():
72
+ output = model.generate(
73
+ tokenized_input,
74
+ max_new_tokens=100,
75
+ do_sample=True,
76
+ top_p=0.95,
77
+ temperature=0.7,
78
+ repetition_penalty=1.05,
79
+ )[0]
80
+ print(tokenizer.decode(output))
81
+ ```
82
+
83
+
84
+ ## Model Details
85
+
86
+ - **Model type:** Transformer-based Language Model
87
+ - **Total seen tokens:**:
88
+ - llm-jp-3-1.8b: 2.1T
89
+ - llm-jp-3-3.7b: 2.1T
90
+ - llm-jp-3-13b: 2.1T
91
+ - llm-jp-3-172b-beta1: 0.7T
92
+ - llm-jp-3-172b-beta2: 1.4T
93
+ - llm-jp-3-172b: 2.1T
94
+
95
+ |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters|
96
+ |:---:|:---:|:---:|:---:|:---:|:---:|:---:|
97
+ |1.8b|24|2048|16|4096|407,498,752|1,459,718,144|
98
+ |3.7b|28|3072|24|4096|611,248,128|3,171,068,928|
99
+ |13b|40|5120|40|4096|1,018,746,880|12,688,184,320|
100
+ |172b|96|12288|96|4096|2,444,992,512|169,947,181,056|
101
+
102
+
103
+ ## Tokenizer
104
+
105
+ The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
106
+ The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2).
107
+ Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).
108
+
109
+ ## Datasets
110
+
111
+ ### Pre-training
112
+
113
+ The models have been pre-trained using a blend of the following datasets.
114
+
115
+ | Language | Dataset | Tokens|
116
+ |:---|:---|---:|
117
+ |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B
118
+ ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B
119
+ ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B
120
+ ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B
121
+ ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B
122
+ |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B
123
+ ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B
124
+ ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B
125
+ ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B
126
+ ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B
127
+ ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B
128
+ ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B
129
+ |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B
130
+ |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B
131
+ |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B
132
+
133
+ ### Post-training
134
+
135
+ We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization.
136
+
137
+ #### Supervised Fine-tuning
138
+ The datasets used for supervised fine-tuning are as follows:
139
+
140
+ | Language | Dataset | Description |
141
+ |:---|:---|:---|
142
+ |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset. |
143
+ | |[answer-carefully-002](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed instruction dataset focusing on LLMs' safety. |
144
+ | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. |
145
+ | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. |
146
+ | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. |
147
+ | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. We used a sampled subset. |
148
+ | |[wizardlm8x22b-logical-math-coding-sft_additional-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja)| A synthetic instruction dataset. We used a sampled subset. |
149
+ | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. |
150
+ |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - |
151
+ | |[FLAN](https://huggingface.co/datasets/Open-Orca/FLAN) | We used a sampled subset. |
152
+ |Japanese & English|[Synthetic-JP-EN-Coding-Dataset-567k](https://huggingface.co/datasets/Aratako/Synthetic-JP-EN-Coding-Dataset-567k)| A synthetic instruction dataset. We used a sampled subset. |
153
+
154
+
155
+ #### Direct Preference Optimization
156
+
157
+ We used synthetic preference data to improve both the helpfulness and harmlessness of the LLM. The datasets will be made available soon.
158
+
159
+ ## Evaluation
160
+
161
+ ### llm-jp-eval (v1.4.1)
162
+
163
+ We evaluated the models using 100 examples from the dev split. Note that we skipped the CG (Code Generation) task.
164
+
165
+ | Model name | average | EL | FA | HE | MC | MR | MT | NLI | QA | RC | SUM |
166
+ | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
167
+ | [llm-jp-3-172b-beta1](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1) | 0.5174 | 0.4460 | 0.2556 | 0.3700 | 0.6400 | 0.6100 | 0.8265 | 0.5600 | 0.5720 | 0.8505 | 0.0434 |
168
+ | [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) | 0.5700 | 0.4306 | 0.2292 | 0.4350 | 0.8433 | 0.6200 | 0.8228 | 0.6820 | 0.5873 | 0.8964 | 0.1529 |
169
+ | [llm-jp-3-172b-beta2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2) | 0.5422 | 0.3337 | 0.2725 | 0.4700 | 0.7767 | 0.6900 | 0.8283 | 0.5960 | 0.6133 | 0.8380 | 0.0037 |
170
+ | [llm-jp-3-172b-beta2-instruct2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2-instruct2) | 0.6022 | 0.5470 | 0.2665 | 0.5100 | 0.8600 | 0.7000 | 0.8392 | 0.6800 | 0.6346 | 0.8770 | 0.1076 |
171
+ | [llm-jp-3-172b](https://huggingface.co/llm-jp/llm-jp-3-172b) | 0.5431 | 0.4077 | 0.2662 | 0.5150 | 0.7633 | 0.6700 | 0.8227 | 0.5740 | 0.5686 | 0.8289 | 0.0148 |
172
+ | [llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | 0.6130 | 0.5173 | 0.2711 | 0.5700 | 0.8733 | 0.7300 | 0.8437 | 0.7280 | 0.6012 | 0.8829 | 0.1121 |
173
+
174
+
175
+
176
+ ### Japanese MT Bench
177
+
178
+ We evaluated the models using `gpt-4-0613`. Please see the [codes](https://github.com/wandb/llm-leaderboard/tree/g-leaderboard) for details.
179
+
180
+ | Model name | average | coding | extraction | humanities | math | reasoning | roleplay | stem | writing |
181
+ | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
182
+ | [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) | 5.14 | 2.90 | 5.30 | 8.80 | 2.15 | 2.45 | 6.95 | 7.45 | 5.15 |
183
+ | [llm-jp-3-172b-beta2-instruct2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2-instruct2) | 6.72 | 4.10 | 6.90 | 7.60 | 4.00 | 6.35 | 8.70 | 7.95 | 8.15 |
184
+ | [llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-beta2-instruct3) | 7.57 | 4.85 | 8.55 | 9.56 | 3.75 | 7.6 | 8.1 | 8.95 | 9.2 |
185
+
186
+
187
+ ## Risks and Limitations
188
+
189
+ The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
190
+
191
+
192
+ ## Send Questions to
193
+
194
+ llm-jp(at)nii.ac.jp
195
+
196
+
197
+ ## License
198
+
199
+ See the [LICENSE](LICENSE_ja) file.
200
+
201
+ ## Model Card Authors
202
+
203
+ *The names are listed in alphabetical order.*
204
+
205
+ Hirokazu Kiyomaru and Takashi Kodama.