File size: 4,154 Bytes
90e65cb 088afc8 90e65cb 088afc8 0d56c23 088afc8 66f29c4 088afc8 3f87867 088afc8 3f87867 429c270 90dd7af 088afc8 66f29c4 088afc8 b70efd6 088afc8 e61d1a5 088afc8 66f29c4 711c5f8 088afc8 a6156ac 088afc8 66f29c4 088afc8 5ed8ac1 088afc8 66f29c4 088afc8 98bb39f 5ed8ac1 088afc8 66f29c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
license: apache-2.0
language:
- en
- ja
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
inference: false
---
# llm-jp-13b-v1.0-mdsfmt
This repository provides large language models (Megatron-DeepSpeed format) developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan. **Hugging Face Transformers format models are available [here](https://huggingface.co/llm-jp).**
| Model Variant |
| :--- |
|**Pre-trained models** <span style="color:red">(Megatron-DeepSpeed format)</span>|
| [llm-jp-13b-v1.0-mdsfmt](https://huggingface.co/llm-jp/llm-jp-13b-v1.0-mdsfmt) |
| [llm-jp-13b-v1.0-mdsfmt-itr87870](https://huggingface.co/llm-jp/llm-jp-13b-v1.0-mdsfmt-itr87870) |
| [llm-jp-1.3b-v1.0-mdsfmt](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0-mdsfmt) |
| [llm-jp-1.3b-v1.0-mdsfmt-itr87430](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0-mdsfmt-itr87430) |
`llm-jp-13b-v1.0-mdsfmt-itr87870`
and `llm-jp-1.3b-v1.0-mdsfmt-itr87430`
were originally trained with approximately 270B+ tokens.
`llm-jp-13b-v1.0-mdsfmt`
and `llm-jp-1.3b-v1.0-mdsfmt`
are models further trained by additional (potentially) high-quality 27B tokens data from `llm-jp-13b-v1.0-mdsfmt-itr87870` and `llm-jp-1.3b-v1.0-mdsfmt-itr87430`, respectively for finalizing the pre-training.
## Model Details
- **Model type:** Transformer-based Language Model
- **Total seen tokens:** 300B
|Model|Params|Layers|Hidden size|Heads|Context length|
|:---:|:---:|:---:|:---:|:---:|:---:|
|13b model|13b|40|5120|40|2048|
|1.3b model|1.3b|24|2048|16|2048|
## Training
- **Pre-training:**
- **Hardware:** 96 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
- **Software:** Megatron-DeepSpeed
## Tokenizer
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
The vocabulary entries were converted from [`llm-jp-tokenizer v2.1 (50k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.1).
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure.
- **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires `tokenizers>=0.14.0`
- **Training algorithm:** SentencePiece Unigram byte-fallback
- **Training data:** A subset of the datasets for model pre-training
- **Vocabulary size:** 50,570 (mixed vocabulary of Japanese, English, and source code)
## Datasets
### Pre-training
The models have been pre-trained using a blend of the following datasets.
| Language | Dataset | Tokens |
|:---:|:---:|:---:|
|Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.5B
||[mC4](https://huggingface.co/datasets/mc4)|136B
|English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|5B
||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|135B
|Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|10B
The pre-training was continuously conducted using a total of 10 folds of non-overlapping data, each consisting of approximately 27-28B tokens.
We finalized the pre-training with additional (potentially) high-quality 27B tokens data obtained from the identical source datasets listed above used for the 10-fold data.
## Evaluation
You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) for the evaluation.
## Risks and Limitations
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
## Send Questions to
llm-jp(at)nii.ac.jp
## License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Model Card Authors
*The names are listed in alphabetical order.*
Hirokazu Kiyomaru, Hiroshi Matsuda, Jun Suzuki, Namgi Han, Saku Sugawara, Shota Sasaki, Shuhei Kurita, Taishi Nakamura, Takumi Okamoto. |