File size: 4,154 Bytes
90e65cb
 
088afc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90e65cb
088afc8
0d56c23
088afc8
66f29c4
088afc8
3f87867
088afc8
3f87867
429c270
 
 
 
90dd7af
088afc8
66f29c4
 
 
 
 
 
088afc8
 
 
 
 
b70efd6
088afc8
e61d1a5
 
 
 
088afc8
 
 
 
 
 
 
 
 
 
 
66f29c4
711c5f8
088afc8
 
 
 
 
 
 
 
a6156ac
088afc8
66f29c4
088afc8
5ed8ac1
088afc8
 
 
 
 
 
 
66f29c4
 
088afc8
 
 
98bb39f
5ed8ac1
088afc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66f29c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: apache-2.0
language:
  - en
  - ja
programming_language:
  - C
  - C++
  - C#
  - Go
  - Java
  - JavaScript
  - Lua
  - PHP
  - Python
  - Ruby
  - Rust
  - Scala
  - TypeScript
pipeline_tag: text-generation
inference: false
---

# llm-jp-13b-v1.0-mdsfmt

This repository provides large language models (Megatron-DeepSpeed format) developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan. **Hugging Face Transformers format models are available [here](https://huggingface.co/llm-jp).**

| Model Variant |
| :--- |
|**Pre-trained models** <span style="color:red">(Megatron-DeepSpeed format)</span>|
| [llm-jp-13b-v1.0-mdsfmt](https://huggingface.co/llm-jp/llm-jp-13b-v1.0-mdsfmt) |
| [llm-jp-13b-v1.0-mdsfmt-itr87870](https://huggingface.co/llm-jp/llm-jp-13b-v1.0-mdsfmt-itr87870) |
| [llm-jp-1.3b-v1.0-mdsfmt](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0-mdsfmt) |
| [llm-jp-1.3b-v1.0-mdsfmt-itr87430](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0-mdsfmt-itr87430) | 


`llm-jp-13b-v1.0-mdsfmt-itr87870` 
and `llm-jp-1.3b-v1.0-mdsfmt-itr87430` 
were originally trained with approximately 270B+ tokens. 
`llm-jp-13b-v1.0-mdsfmt` 
and `llm-jp-1.3b-v1.0-mdsfmt` 
are models further trained by additional (potentially) high-quality 27B tokens data from `llm-jp-13b-v1.0-mdsfmt-itr87870` and `llm-jp-1.3b-v1.0-mdsfmt-itr87430`, respectively for finalizing the pre-training.


## Model Details

- **Model type:** Transformer-based Language Model
- **Total seen tokens:** 300B

|Model|Params|Layers|Hidden size|Heads|Context length|
|:---:|:---:|:---:|:---:|:---:|:---:|
|13b model|13b|40|5120|40|2048|
|1.3b model|1.3b|24|2048|16|2048|


## Training

- **Pre-training:**
  - **Hardware:** 96 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
  - **Software:** Megatron-DeepSpeed


## Tokenizer
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
The vocabulary entries were converted from [`llm-jp-tokenizer v2.1 (50k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.1).
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure.
- **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires `tokenizers>=0.14.0`
- **Training algorithm:** SentencePiece Unigram byte-fallback
- **Training data:** A subset of the datasets for model pre-training
- **Vocabulary size:** 50,570 (mixed vocabulary of Japanese, English, and source code)


## Datasets

### Pre-training

The models have been pre-trained using a blend of the following datasets.

| Language | Dataset | Tokens |
|:---:|:---:|:---:|
|Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.5B
||[mC4](https://huggingface.co/datasets/mc4)|136B
|English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|5B
||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|135B
|Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|10B

The pre-training was continuously conducted using a total of 10 folds of non-overlapping data, each consisting of approximately 27-28B tokens.
We finalized the pre-training with additional (potentially) high-quality 27B tokens data obtained from the identical source datasets listed above used for the 10-fold data.


## Evaluation

You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) for the evaluation.


## Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.


## Send Questions to

llm-jp(at)nii.ac.jp


## License

[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)


## Model Card Authors
*The names are listed in alphabetical order.*

Hirokazu Kiyomaru, Hiroshi Matsuda, Jun Suzuki, Namgi Han, Saku Sugawara, Shota Sasaki, Shuhei Kurita, Taishi Nakamura, Takumi Okamoto.