File size: 2,038 Bytes
2ac2b9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
base_model: meta-llama/Meta-Llama-3.1-8B
datasets:
- generator
library_name: peft
license: llama3.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: llama3.1-8b-coding-gpt4o-100k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3.1-8b-coding-gpt4o-100k
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.741 | 1.0 | 525 | 1.3567 |
| 0.7109 | 2.0 | 1050 | 1.3158 |
| 0.7026 | 3.0 | 1575 | 1.3116 |
| 0.6682 | 4.0 | 2100 | 1.3090 |
| 0.6825 | 5.0 | 2625 | 1.3126 |
| 0.6429 | 6.0 | 3150 | 1.3228 |
| 0.6334 | 7.0 | 3675 | 1.3276 |
| 0.6257 | 8.0 | 4200 | 1.3404 |
| 0.6314 | 9.0 | 4725 | 1.3410 |
| 0.6205 | 10.0 | 5250 | 1.3444 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |