File size: 2,063 Bytes
1c988ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- llama-duo/synth_summarize_dataset_dedup
base_model: google/gemma-7b
model-index:
- name: gemma7b-summarize-claude3sonnet-32k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma7b-summarize-claude3sonnet-32k
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the llama-duo/synth_summarize_dataset_dedup dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5524
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6901 | 1.0 | 76 | 2.9966 |
| 1.1272 | 2.0 | 152 | 2.6070 |
| 1.0337 | 3.0 | 228 | 2.5657 |
| 0.9638 | 4.0 | 304 | 2.5379 |
| 0.9419 | 5.0 | 380 | 2.5376 |
| 0.9117 | 6.0 | 456 | 2.5333 |
| 0.8944 | 7.0 | 532 | 2.5417 |
| 0.8824 | 8.0 | 608 | 2.5474 |
| 0.8759 | 9.0 | 684 | 2.5541 |
| 0.8735 | 10.0 | 760 | 2.5524 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1 |