File size: 2,105 Bytes
e5f2ea9 f8320e9 e5f2ea9 f8320e9 e5f2ea9 f8320e9 e5f2ea9 a027b44 e5f2ea9 43cf298 e5f2ea9 d3c84c3 e5f2ea9 43cf298 e5f2ea9 abdc5bb e5f2ea9 43cf298 a027b44 e5f2ea9 d3c84c3 e5f2ea9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: gemma
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- llama-duo/synth_summarize_dataset_dedup
model-index:
- name: gemma2b-summarize-gemini1_5flash-64k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma2b-summarize-gemini1_5flash-64k
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the llama-duo/synth_summarize_dataset_dedup dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5322
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2288 | 0.9905 | 52 | 2.5091 |
| 1.0492 | 2.0 | 105 | 2.4525 |
| 1.0025 | 2.9905 | 157 | 2.4599 |
| 0.9597 | 4.0 | 210 | 2.4714 |
| 0.9394 | 4.9905 | 262 | 2.4863 |
| 0.912 | 6.0 | 315 | 2.5085 |
| 0.8901 | 6.9905 | 367 | 2.5172 |
| 0.8887 | 8.0 | 420 | 2.5294 |
| 0.8816 | 8.9905 | 472 | 2.5311 |
| 0.8797 | 9.9048 | 520 | 2.5322 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1 |