distilbert-base-multilingual-cased-finetuned-psi-classification-gpu
This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7609
- Accuracy: 0.8321
- F1: 0.8279
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.2028 | 1.0 | 120 | 0.9207 | 0.7137 | 0.6561 |
0.8459 | 2.0 | 240 | 0.7827 | 0.7443 | 0.7268 |
0.685 | 3.0 | 360 | 0.6843 | 0.7901 | 0.7792 |
0.5474 | 4.0 | 480 | 0.6593 | 0.8015 | 0.8075 |
0.4037 | 5.0 | 600 | 0.6393 | 0.8244 | 0.8211 |
0.3282 | 6.0 | 720 | 0.6804 | 0.8015 | 0.8060 |
0.2728 | 7.0 | 840 | 0.6991 | 0.8321 | 0.8289 |
0.1979 | 8.0 | 960 | 0.7389 | 0.8206 | 0.8196 |
0.1795 | 9.0 | 1080 | 0.7615 | 0.8244 | 0.8231 |
0.1676 | 10.0 | 1200 | 0.7609 | 0.8321 | 0.8279 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 0