English to Greek NMT (lower-case output)

By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)

  • source languages: en
  • target languages: el
  • licence: apache-2.0
  • dataset: Opus, CCmatrix
  • model: transformer(fairseq)
  • pre-processing: tokenization + lower-casing + BPE segmentation
  • metrics: bleu, chrf
  • output: lowercase only, for mixed-cased model use this: https://huggingface.co/lighteternal/SSE-TUC-mt-en-el-cased

Model description

Trained using the Fairseq framework, transformer_iwslt_de_en architecture.
BPE segmentation (10k codes).
Lower-case model.

How to use

from transformers import FSMTTokenizer, FSMTForConditionalGeneration

mname = " <your_downloaded_model_folderpath_here> "

tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)

text = "Not all those who wander are lost."

encoded = tokenizer.encode(text, return_tensors='pt')

outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True)
for i, output in enumerate(outputs):
    i += 1
    print(f"{i}: {output.tolist()}")

    decoded = tokenizer.decode(output, skip_special_tokens=True)
    print(f"{i}: {decoded}")

Training data

Consolidated corpus from Opus and CC-Matrix (~6.6GB in total)

Eval results

Results on Tatoeba testset (EN-EL):

77.3 0.739

Results on XNLI parallel (EN-EL):

66.1 0.606

BibTeX entry and citation info


Downloads last month
Hosted inference API