reranker_bincont_filt_train

This model is a fine-tuned version of Qwen/Qwen2.5-0.5B-Instruct on the reranker_bincont_filt_train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1613

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
0.209 0.1000 3952 0.2207
0.1541 0.2000 7904 0.2108
0.1519 0.3000 11856 0.2030
0.3499 0.4000 15808 0.1939
0.1045 0.5000 19760 0.1834
0.1887 0.6000 23712 0.1770
0.2182 0.7001 27664 0.1695
0.1281 0.8001 31616 0.1645
0.1463 0.9001 35568 0.1617

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
17
Safetensors
Model size
630M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lightblue/reranker_0.5_bincont_filt

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(120)
this model