ESPnet2 ENH model
lichenda/Chenda_Li_wsj0_2mix_enh_dprnn_tasnet
This model was trained by LiChenda using wsj0_2mix recipe in espnet.
Imported from zenodo.
Demo: How to use in ESPnet2
cd espnet
git checkout 54919e2529d6f58f4550d4a72960f57b83f66dc9
pip install -e .
cd egs2/wsj0_2mix/enh1
./run.sh --skip_data_prep false --skip_train true --download_model lichenda/Chenda_Li_wsj0_2mix_enh_dprnn_tasnet
RESULTS
Environments
- date:
Thu Apr 15 00:03:19 CST 2021
- python version:
3.7.10 (default, Feb 26 2021, 18:47:35) [GCC 7.3.0]
- espnet version:
espnet 0.9.8
- pytorch version:
pytorch 1.5.0
- Git hash:
2aa2f151b5929dc9ffa4df39a8d8c26ca4dbdb85
- Commit date:
Tue Mar 30 09:08:27 2021 +0900
- Commit date:
enh_train_enh_dprnn_tasnet_raw
config: conf/tuning/train_enh_dprnn_tasnet.yaml
dataset | STOI | SAR | SDR | SIR |
---|---|---|---|---|
enhanced_cv_min_8k | 0.960037 | 19.0476 | 18.5438 | 29.1591 |
enhanced_tt_min_8k | 0.968376 | 18.8209 | 18.2925 | 28.929 |
ENH config
expand
config: conf/tuning/train_enh_dprnn_tasnet.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: chunk
output_dir: exp/enh_train_enh_dprnn_tasnet_raw
ngpu: 1
seed: 0
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 45126
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 150
patience: 4
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- si_snr
- max
- - valid
- loss
- min
keep_nbest_models: 1
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
detect_anomaly: false
pretrain_path: null
init_param: []
freeze_param: []
num_iters_per_epoch: null
batch_size: 4
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/enh_stats_8k/train/speech_mix_shape
- exp/enh_stats_8k/train/speech_ref1_shape
- exp/enh_stats_8k/train/speech_ref2_shape
valid_shape_file:
- exp/enh_stats_8k/valid/speech_mix_shape
- exp/enh_stats_8k/valid/speech_ref1_shape
- exp/enh_stats_8k/valid/speech_ref2_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 80000
- 80000
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 32000
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/tr_min_8k/wav.scp
- speech_mix
- sound
- - dump/raw/tr_min_8k/spk1.scp
- speech_ref1
- sound
- - dump/raw/tr_min_8k/spk2.scp
- speech_ref2
- sound
valid_data_path_and_name_and_type:
- - dump/raw/cv_min_8k/wav.scp
- speech_mix
- sound
- - dump/raw/cv_min_8k/spk1.scp
- speech_ref1
- sound
- - dump/raw/cv_min_8k/spk2.scp
- speech_ref2
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.001
eps: 1.0e-08
weight_decay: 0
scheduler: reducelronplateau
scheduler_conf:
mode: min
factor: 0.7
patience: 1
init: xavier_uniform
model_conf:
loss_type: si_snr
use_preprocessor: false
encoder: conv
encoder_conf:
channel: 64
kernel_size: 2
stride: 1
separator: dprnn
separator_conf:
num_spk: 2
layer: 6
rnn_type: lstm
bidirectional: true
nonlinear: relu
unit: 128
segment_size: 250
dropout: 0.1
decoder: conv
decoder_conf:
channel: 64
kernel_size: 2
stride: 1
required:
- output_dir
version: 0.9.8
distributed: true
Citing ESPnet
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{ESPnet-SE,
author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and
Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe},
title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration},
booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021},
pages = {785--792},
publisher = {{IEEE}},
year = {2021},
url = {https://doi.org/10.1109/SLT48900.2021.9383615},
doi = {10.1109/SLT48900.2021.9383615},
timestamp = {Mon, 12 Apr 2021 17:08:59 +0200},
biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 14
Inference API (serverless) does not yet support espnet models for this pipeline type.