Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: llamafactory/tiny-random-Llama-3
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 7cab71aee4d2d374_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/7cab71aee4d2d374_train_data.json
  type:
    field_instruction: query
    field_output: answer
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso11/fde22031-44ea-43f8-ac1d-6bebbfde5d49
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/7cab71aee4d2d374_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: fde22031-44ea-43f8-ac1d-6bebbfde5d49
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fde22031-44ea-43f8-ac1d-6bebbfde5d49
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

fde22031-44ea-43f8-ac1d-6bebbfde5d49

This model is a fine-tuned version of llamafactory/tiny-random-Llama-3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.7545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
11.7674 0.0017 1 11.7603
11.7578 0.0150 9 11.7600
11.7634 0.0299 18 11.7593
11.7611 0.0449 27 11.7585
11.7557 0.0599 36 11.7577
11.7613 0.0748 45 11.7569
11.7463 0.0898 54 11.7561
11.7585 0.1047 63 11.7554
11.7566 0.1197 72 11.7549
11.7592 0.1347 81 11.7547
11.7514 0.1496 90 11.7546
11.7602 0.1646 99 11.7545

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso11/fde22031-44ea-43f8-ac1d-6bebbfde5d49

Adapter
(92)
this model