Transformers
Safetensors
Inference Endpoints
Edit model card

Usage:

import transformers

# Your inputs
transcription = "o sey xtok rixoqiil"
translation = "O sea busca esposa."
lang = "Uspanteco"
metalang = "Spanish"
is_segmented = False

prompt = f"""Provide the glosses for the following transcription in {lang}.

Transcription in {lang}: {transcription}
Transcription segmented: {is_segmented}
Translation in {metalang}: {translation}\n
Glosses: 
"""

model = transformers.T5ForConditionalGeneration.from_pretrained("lecslab/glosslm")
tokenizer = transformers.ByT5Tokenizer.from_pretrained(
    "google/byt5-base", use_fast=False
)

inputs = tokenizer(prompt, return_tensors="pt")
outputs = tokenizer.batch_decode(
    model.generate(**inputs, max_length=1024), skip_special_tokens=True
)
print(outputs[0])
# o sea COM-buscar E3S-esposa
Downloads last month
53
Safetensors
Model size
582M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lecslab/glosslm

Base model

google/byt5-base
Finetuned
(5)
this model

Dataset used to train lecslab/glosslm

Collection including lecslab/glosslm