Edit model card

text_shortening_model_v75

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2113
  • Bert precision: 0.8889
  • Bert recall: 0.8883
  • Bert f1-score: 0.8881
  • Average word count: 6.8466
  • Max word count: 15
  • Min word count: 1
  • Average token count: 10.892
  • % shortened texts with length > 12: 1.9632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.4857 1.0 30 1.9604 0.8298 0.8444 0.8359 9.1436 19 1 13.7337 14.2331
2.1772 2.0 60 1.7312 0.8337 0.839 0.8349 8.1264 19 1 12.3264 10.5521
1.9897 3.0 90 1.6036 0.8513 0.8528 0.8508 7.6528 19 1 11.8748 8.3436
1.8748 4.0 120 1.5274 0.8616 0.8583 0.8589 7.1988 17 1 11.4368 6.0123
1.7948 5.0 150 1.4678 0.8709 0.8669 0.868 7.0086 17 1 11.1914 4.4172
1.7436 6.0 180 1.4245 0.8763 0.8726 0.8737 6.9681 16 1 11.1387 3.8037
1.6914 7.0 210 1.3948 0.8808 0.8792 0.8793 6.9706 18 1 11.0773 3.9264
1.6484 8.0 240 1.3716 0.8846 0.8814 0.8824 6.789 15 2 10.8687 2.9448
1.6177 9.0 270 1.3534 0.8858 0.8827 0.8836 6.8294 16 2 10.8712 3.0675
1.6034 10.0 300 1.3371 0.8854 0.8826 0.8834 6.8528 16 2 10.865 2.9448
1.5696 11.0 330 1.3237 0.8863 0.8842 0.8847 6.8393 16 2 10.8577 2.6994
1.5474 12.0 360 1.3115 0.8874 0.8844 0.8853 6.7669 16 2 10.7742 2.5767
1.5354 13.0 390 1.3011 0.8867 0.8836 0.8846 6.7607 16 2 10.7644 2.3313
1.5173 14.0 420 1.2916 0.8872 0.8834 0.8847 6.7067 16 2 10.7117 2.0859
1.5061 15.0 450 1.2822 0.8873 0.8833 0.8848 6.6969 16 2 10.6945 1.9632
1.4861 16.0 480 1.2742 0.8882 0.8846 0.8858 6.692 16 2 10.7043 1.5951
1.4793 17.0 510 1.2673 0.8881 0.8848 0.8859 6.719 16 1 10.7325 1.9632
1.4736 18.0 540 1.2621 0.8888 0.8856 0.8867 6.7399 16 1 10.7571 1.9632
1.4592 19.0 570 1.2563 0.8889 0.8863 0.8871 6.7497 16 1 10.7755 1.9632
1.459 20.0 600 1.2514 0.8885 0.8863 0.8868 6.773 16 1 10.7902 1.9632
1.4446 21.0 630 1.2472 0.8883 0.8859 0.8865 6.7571 16 1 10.7546 1.8405
1.4324 22.0 660 1.2431 0.888 0.8864 0.8866 6.7779 16 1 10.7853 1.8405
1.431 23.0 690 1.2396 0.8881 0.8866 0.8868 6.7828 16 1 10.8098 1.8405
1.4233 24.0 720 1.2358 0.8885 0.8869 0.8872 6.784 16 1 10.8123 1.9632
1.4218 25.0 750 1.2322 0.8887 0.8874 0.8875 6.8135 16 1 10.8417 1.8405
1.4086 26.0 780 1.2295 0.8885 0.8878 0.8876 6.8356 16 1 10.8982 1.9632
1.4104 27.0 810 1.2267 0.8883 0.8877 0.8875 6.8491 16 1 10.9166 1.9632
1.4046 28.0 840 1.2242 0.888 0.8877 0.8873 6.8577 16 1 10.9411 1.9632
1.4034 29.0 870 1.2222 0.8882 0.8881 0.8876 6.8626 16 1 10.9436 1.9632
1.3942 30.0 900 1.2204 0.8883 0.8881 0.8877 6.8577 16 1 10.935 2.0859
1.3909 31.0 930 1.2182 0.8885 0.8881 0.8878 6.8368 15 1 10.908 1.8405
1.385 32.0 960 1.2167 0.8889 0.8884 0.8882 6.838 15 1 10.9006 1.8405
1.3833 33.0 990 1.2149 0.889 0.8884 0.8882 6.8368 15 1 10.8945 1.8405
1.3831 34.0 1020 1.2139 0.8891 0.8885 0.8883 6.8454 15 1 10.9018 1.8405
1.3811 35.0 1050 1.2129 0.8891 0.8884 0.8882 6.8356 15 1 10.8908 1.8405
1.3869 36.0 1080 1.2124 0.8891 0.8883 0.8881 6.8294 15 1 10.8785 1.8405
1.3696 37.0 1110 1.2120 0.889 0.8881 0.8881 6.8233 15 1 10.8663 1.8405
1.3791 38.0 1140 1.2116 0.8889 0.8881 0.888 6.8307 15 1 10.8748 1.8405
1.3755 39.0 1170 1.2113 0.8889 0.8881 0.888 6.8331 15 1 10.8773 1.8405
1.3668 40.0 1200 1.2113 0.8889 0.8883 0.8881 6.8466 15 1 10.892 1.9632

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v75

Base model

google-t5/t5-small
Finetuned
(1488)
this model