Edit model card

text_shortening_model_v71

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3875
  • Bert precision: 0.9031
  • Bert recall: 0.9018
  • Bert f1-score: 0.902
  • Average word count: 6.4725
  • Max word count: 18
  • Min word count: 2
  • Average token count: 10.5235
  • % shortened texts with length > 12: 1.4014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.8083 1.0 37 1.2558 0.8866 0.8836 0.8845 6.5606 17 1 10.4024 1.4014
1.3282 2.0 74 1.1453 0.8901 0.8914 0.8902 6.6797 18 1 10.5205 1.9019
1.1679 3.0 111 1.1190 0.8937 0.8928 0.8928 6.4825 18 1 10.4174 1.8018
1.0406 4.0 148 1.0827 0.8927 0.8956 0.8936 6.7377 18 2 10.6837 1.6016
0.9626 5.0 185 1.0821 0.8969 0.8978 0.8969 6.6176 18 2 10.6476 2.002
0.8814 6.0 222 1.0887 0.8974 0.9004 0.8984 6.7538 18 2 10.7908 2.3023
0.8163 7.0 259 1.0816 0.8972 0.8979 0.8971 6.6056 18 2 10.6096 1.8018
0.7636 8.0 296 1.0855 0.8987 0.8999 0.8988 6.5846 18 2 10.6967 2.002
0.7237 9.0 333 1.0949 0.8988 0.9004 0.8992 6.6346 18 2 10.6797 1.7017
0.6776 10.0 370 1.1174 0.9002 0.9017 0.9005 6.6186 18 2 10.6947 1.7017
0.6399 11.0 407 1.1237 0.8988 0.9002 0.8991 6.6316 18 2 10.6567 2.1021
0.5949 12.0 444 1.1426 0.8999 0.8988 0.8989 6.4755 18 2 10.5485 1.4014
0.5685 13.0 481 1.1564 0.9003 0.9015 0.9004 6.6216 18 2 10.6136 1.7017
0.5374 14.0 518 1.1690 0.9003 0.8997 0.8995 6.5506 18 2 10.5726 1.8018
0.5183 15.0 555 1.1736 0.9008 0.8997 0.8998 6.5415 18 2 10.5526 1.6016
0.4862 16.0 592 1.1882 0.8995 0.9001 0.8994 6.5936 18 2 10.6056 1.3013
0.4769 17.0 629 1.1910 0.9005 0.9003 0.8999 6.5716 18 2 10.6026 1.6016
0.4565 18.0 666 1.1957 0.9009 0.9 0.9 6.4615 18 2 10.5275 1.1011
0.4264 19.0 703 1.2276 0.9008 0.9004 0.9001 6.5125 18 2 10.5556 1.4014
0.4245 20.0 740 1.2415 0.9023 0.9005 0.9009 6.4605 18 2 10.4945 1.4014
0.4015 21.0 777 1.2658 0.9011 0.9004 0.9003 6.5135 18 2 10.5636 1.2012
0.3903 22.0 814 1.2779 0.9021 0.9018 0.9015 6.5495 18 2 10.5475 1.1011
0.3821 23.0 851 1.2899 0.9016 0.902 0.9014 6.5716 18 2 10.6336 1.4014
0.3595 24.0 888 1.3062 0.9007 0.9013 0.9005 6.5936 18 2 10.6947 1.3013
0.3551 25.0 925 1.3088 0.9015 0.9005 0.9006 6.4975 17 2 10.5355 1.2012
0.343 26.0 962 1.3169 0.9018 0.9009 0.9009 6.5005 17 2 10.5716 1.2012
0.3426 27.0 999 1.3264 0.8997 0.9018 0.9003 6.6486 17 2 10.7658 1.4014
0.3314 28.0 1036 1.3234 0.9018 0.9008 0.9008 6.4865 18 2 10.5165 1.2012
0.3187 29.0 1073 1.3378 0.9013 0.9003 0.9003 6.5055 18 2 10.5305 1.2012
0.3169 30.0 1110 1.3497 0.9015 0.9003 0.9004 6.4835 18 2 10.5546 1.2012
0.312 31.0 1147 1.3589 0.9018 0.8997 0.9003 6.4585 18 2 10.4615 1.2012
0.2995 32.0 1184 1.3572 0.901 0.9006 0.9004 6.5215 18 2 10.5866 1.3013
0.2987 33.0 1221 1.3647 0.9014 0.9009 0.9007 6.5305 18 2 10.5956 1.5015
0.2907 34.0 1258 1.3693 0.902 0.9007 0.9009 6.4585 18 2 10.5205 1.2012
0.2853 35.0 1295 1.3774 0.9026 0.9016 0.9016 6.4935 18 2 10.5385 1.2012
0.2746 36.0 1332 1.3815 0.9027 0.9023 0.9021 6.5285 18 2 10.5706 1.4014
0.2798 37.0 1369 1.3818 0.9026 0.9016 0.9016 6.4935 18 2 10.5285 1.4014
0.2801 38.0 1406 1.3858 0.9031 0.9018 0.902 6.4665 18 2 10.5175 1.3013
0.2773 39.0 1443 1.3868 0.9031 0.9018 0.902 6.4625 18 2 10.5185 1.3013
0.2756 40.0 1480 1.3875 0.9031 0.9018 0.902 6.4725 18 2 10.5235 1.4014

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v71

Base model

google-t5/t5-small
Finetuned
(1529)
this model