Edit model card

text_shortening_model_v66

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1443
  • Bert precision: 0.8948
  • Bert recall: 0.8974
  • Bert f1-score: 0.8956
  • Average word count: 6.6286
  • Max word count: 16
  • Min word count: 2
  • Average token count: 10.7187
  • % shortened texts with length > 12: 2.2022

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.9029 1.0 73 1.3504 0.8775 0.8783 0.8772 6.6056 16 2 10.4785 2.2022
1.4456 2.0 146 1.2479 0.8813 0.8826 0.8813 6.6196 16 1 10.5105 1.2012
1.3171 3.0 219 1.1852 0.8834 0.8855 0.8839 6.6266 17 2 10.5806 1.5015
1.2221 4.0 292 1.1588 0.8852 0.8898 0.8869 6.7658 16 2 10.7588 1.9019
1.1597 5.0 365 1.1333 0.8865 0.8879 0.8866 6.5606 16 2 10.4735 1.3013
1.0924 6.0 438 1.1215 0.887 0.892 0.8889 6.8579 16 2 10.8759 2.2022
1.0445 7.0 511 1.1125 0.8897 0.8921 0.8904 6.6587 17 2 10.5996 1.5015
1.0004 8.0 584 1.1074 0.8901 0.8936 0.8913 6.7558 16 2 10.7778 2.4024
0.9619 9.0 657 1.1033 0.8903 0.8928 0.891 6.6677 16 2 10.6807 1.6016
0.9266 10.0 730 1.0955 0.8888 0.8921 0.8899 6.7007 16 2 10.7237 1.8018
0.8997 11.0 803 1.0948 0.8901 0.8918 0.8904 6.6236 16 2 10.6396 2.1021
0.87 12.0 876 1.0894 0.8909 0.8929 0.8913 6.6226 16 2 10.6406 2.2022
0.841 13.0 949 1.0987 0.8926 0.8945 0.893 6.5836 16 2 10.6176 1.8018
0.8137 14.0 1022 1.0864 0.8917 0.8939 0.8923 6.6006 16 2 10.6196 1.5015
0.7931 15.0 1095 1.0959 0.8927 0.8945 0.8931 6.6096 16 1 10.6627 1.9019
0.7774 16.0 1168 1.0996 0.8924 0.8939 0.8926 6.5696 16 1 10.6326 1.7017
0.7494 17.0 1241 1.1002 0.8934 0.8942 0.8933 6.5235 16 1 10.5706 1.6016
0.7429 18.0 1314 1.0967 0.8916 0.8958 0.8932 6.7327 16 1 10.7508 1.8018
0.7154 19.0 1387 1.1036 0.8938 0.8953 0.8941 6.6046 16 1 10.6156 1.7017
0.6968 20.0 1460 1.0964 0.8942 0.8962 0.8947 6.5786 16 1 10.6246 1.7017
0.6913 21.0 1533 1.1004 0.8941 0.8956 0.8943 6.5586 16 1 10.5636 1.7017
0.6775 22.0 1606 1.1009 0.8946 0.8961 0.8949 6.5636 16 1 10.5666 1.8018
0.6616 23.0 1679 1.1088 0.8939 0.8958 0.8943 6.5756 16 1 10.6106 1.8018
0.6451 24.0 1752 1.1169 0.8944 0.8973 0.8954 6.6216 16 1 10.6657 2.3023
0.6385 25.0 1825 1.1169 0.8949 0.8973 0.8956 6.5996 16 1 10.6496 2.2022
0.6305 26.0 1898 1.1231 0.8937 0.8968 0.8948 6.6406 16 1 10.7518 2.1021
0.6215 27.0 1971 1.1229 0.895 0.8972 0.8956 6.6156 16 1 10.6837 2.2022
0.6128 28.0 2044 1.1234 0.8946 0.8964 0.895 6.5676 16 2 10.6346 2.1021
0.6067 29.0 2117 1.1262 0.8945 0.8979 0.8957 6.6797 16 2 10.7588 2.3023
0.6017 30.0 2190 1.1302 0.8941 0.8974 0.8953 6.6667 16 2 10.7588 2.2022
0.5924 31.0 2263 1.1263 0.8947 0.8982 0.896 6.6687 16 2 10.7397 2.1021
0.591 32.0 2336 1.1275 0.8948 0.8971 0.8955 6.5976 16 2 10.6677 2.002
0.5862 33.0 2409 1.1328 0.8949 0.8971 0.8955 6.6096 16 2 10.6647 2.1021
0.5772 34.0 2482 1.1377 0.8947 0.8972 0.8955 6.6036 16 2 10.6937 2.1021
0.5754 35.0 2555 1.1382 0.8951 0.8976 0.8959 6.6216 16 2 10.7087 2.2022
0.5673 36.0 2628 1.1428 0.8943 0.8975 0.8954 6.6557 16 2 10.7758 2.2022
0.5698 37.0 2701 1.1434 0.8946 0.8976 0.8956 6.6466 16 2 10.7548 2.2022
0.5555 38.0 2774 1.1449 0.8946 0.8975 0.8956 6.6436 16 2 10.7447 2.3023
0.5647 39.0 2847 1.1443 0.8948 0.8974 0.8956 6.6366 16 2 10.7297 2.2022
0.5602 40.0 2920 1.1443 0.8948 0.8974 0.8956 6.6286 16 2 10.7187 2.2022

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v66

Base model

google-t5/t5-small
Finetuned
(1488)
this model