text_shortening_model_v66
This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1443
- Bert precision: 0.8948
- Bert recall: 0.8974
- Bert f1-score: 0.8956
- Average word count: 6.6286
- Max word count: 16
- Min word count: 2
- Average token count: 10.7187
- % shortened texts with length > 12: 2.2022
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Bert precision | Bert recall | Bert f1-score | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
1.9029 | 1.0 | 73 | 1.3504 | 0.8775 | 0.8783 | 0.8772 | 6.6056 | 16 | 2 | 10.4785 | 2.2022 |
1.4456 | 2.0 | 146 | 1.2479 | 0.8813 | 0.8826 | 0.8813 | 6.6196 | 16 | 1 | 10.5105 | 1.2012 |
1.3171 | 3.0 | 219 | 1.1852 | 0.8834 | 0.8855 | 0.8839 | 6.6266 | 17 | 2 | 10.5806 | 1.5015 |
1.2221 | 4.0 | 292 | 1.1588 | 0.8852 | 0.8898 | 0.8869 | 6.7658 | 16 | 2 | 10.7588 | 1.9019 |
1.1597 | 5.0 | 365 | 1.1333 | 0.8865 | 0.8879 | 0.8866 | 6.5606 | 16 | 2 | 10.4735 | 1.3013 |
1.0924 | 6.0 | 438 | 1.1215 | 0.887 | 0.892 | 0.8889 | 6.8579 | 16 | 2 | 10.8759 | 2.2022 |
1.0445 | 7.0 | 511 | 1.1125 | 0.8897 | 0.8921 | 0.8904 | 6.6587 | 17 | 2 | 10.5996 | 1.5015 |
1.0004 | 8.0 | 584 | 1.1074 | 0.8901 | 0.8936 | 0.8913 | 6.7558 | 16 | 2 | 10.7778 | 2.4024 |
0.9619 | 9.0 | 657 | 1.1033 | 0.8903 | 0.8928 | 0.891 | 6.6677 | 16 | 2 | 10.6807 | 1.6016 |
0.9266 | 10.0 | 730 | 1.0955 | 0.8888 | 0.8921 | 0.8899 | 6.7007 | 16 | 2 | 10.7237 | 1.8018 |
0.8997 | 11.0 | 803 | 1.0948 | 0.8901 | 0.8918 | 0.8904 | 6.6236 | 16 | 2 | 10.6396 | 2.1021 |
0.87 | 12.0 | 876 | 1.0894 | 0.8909 | 0.8929 | 0.8913 | 6.6226 | 16 | 2 | 10.6406 | 2.2022 |
0.841 | 13.0 | 949 | 1.0987 | 0.8926 | 0.8945 | 0.893 | 6.5836 | 16 | 2 | 10.6176 | 1.8018 |
0.8137 | 14.0 | 1022 | 1.0864 | 0.8917 | 0.8939 | 0.8923 | 6.6006 | 16 | 2 | 10.6196 | 1.5015 |
0.7931 | 15.0 | 1095 | 1.0959 | 0.8927 | 0.8945 | 0.8931 | 6.6096 | 16 | 1 | 10.6627 | 1.9019 |
0.7774 | 16.0 | 1168 | 1.0996 | 0.8924 | 0.8939 | 0.8926 | 6.5696 | 16 | 1 | 10.6326 | 1.7017 |
0.7494 | 17.0 | 1241 | 1.1002 | 0.8934 | 0.8942 | 0.8933 | 6.5235 | 16 | 1 | 10.5706 | 1.6016 |
0.7429 | 18.0 | 1314 | 1.0967 | 0.8916 | 0.8958 | 0.8932 | 6.7327 | 16 | 1 | 10.7508 | 1.8018 |
0.7154 | 19.0 | 1387 | 1.1036 | 0.8938 | 0.8953 | 0.8941 | 6.6046 | 16 | 1 | 10.6156 | 1.7017 |
0.6968 | 20.0 | 1460 | 1.0964 | 0.8942 | 0.8962 | 0.8947 | 6.5786 | 16 | 1 | 10.6246 | 1.7017 |
0.6913 | 21.0 | 1533 | 1.1004 | 0.8941 | 0.8956 | 0.8943 | 6.5586 | 16 | 1 | 10.5636 | 1.7017 |
0.6775 | 22.0 | 1606 | 1.1009 | 0.8946 | 0.8961 | 0.8949 | 6.5636 | 16 | 1 | 10.5666 | 1.8018 |
0.6616 | 23.0 | 1679 | 1.1088 | 0.8939 | 0.8958 | 0.8943 | 6.5756 | 16 | 1 | 10.6106 | 1.8018 |
0.6451 | 24.0 | 1752 | 1.1169 | 0.8944 | 0.8973 | 0.8954 | 6.6216 | 16 | 1 | 10.6657 | 2.3023 |
0.6385 | 25.0 | 1825 | 1.1169 | 0.8949 | 0.8973 | 0.8956 | 6.5996 | 16 | 1 | 10.6496 | 2.2022 |
0.6305 | 26.0 | 1898 | 1.1231 | 0.8937 | 0.8968 | 0.8948 | 6.6406 | 16 | 1 | 10.7518 | 2.1021 |
0.6215 | 27.0 | 1971 | 1.1229 | 0.895 | 0.8972 | 0.8956 | 6.6156 | 16 | 1 | 10.6837 | 2.2022 |
0.6128 | 28.0 | 2044 | 1.1234 | 0.8946 | 0.8964 | 0.895 | 6.5676 | 16 | 2 | 10.6346 | 2.1021 |
0.6067 | 29.0 | 2117 | 1.1262 | 0.8945 | 0.8979 | 0.8957 | 6.6797 | 16 | 2 | 10.7588 | 2.3023 |
0.6017 | 30.0 | 2190 | 1.1302 | 0.8941 | 0.8974 | 0.8953 | 6.6667 | 16 | 2 | 10.7588 | 2.2022 |
0.5924 | 31.0 | 2263 | 1.1263 | 0.8947 | 0.8982 | 0.896 | 6.6687 | 16 | 2 | 10.7397 | 2.1021 |
0.591 | 32.0 | 2336 | 1.1275 | 0.8948 | 0.8971 | 0.8955 | 6.5976 | 16 | 2 | 10.6677 | 2.002 |
0.5862 | 33.0 | 2409 | 1.1328 | 0.8949 | 0.8971 | 0.8955 | 6.6096 | 16 | 2 | 10.6647 | 2.1021 |
0.5772 | 34.0 | 2482 | 1.1377 | 0.8947 | 0.8972 | 0.8955 | 6.6036 | 16 | 2 | 10.6937 | 2.1021 |
0.5754 | 35.0 | 2555 | 1.1382 | 0.8951 | 0.8976 | 0.8959 | 6.6216 | 16 | 2 | 10.7087 | 2.2022 |
0.5673 | 36.0 | 2628 | 1.1428 | 0.8943 | 0.8975 | 0.8954 | 6.6557 | 16 | 2 | 10.7758 | 2.2022 |
0.5698 | 37.0 | 2701 | 1.1434 | 0.8946 | 0.8976 | 0.8956 | 6.6466 | 16 | 2 | 10.7548 | 2.2022 |
0.5555 | 38.0 | 2774 | 1.1449 | 0.8946 | 0.8975 | 0.8956 | 6.6436 | 16 | 2 | 10.7447 | 2.3023 |
0.5647 | 39.0 | 2847 | 1.1443 | 0.8948 | 0.8974 | 0.8956 | 6.6366 | 16 | 2 | 10.7297 | 2.2022 |
0.5602 | 40.0 | 2920 | 1.1443 | 0.8948 | 0.8974 | 0.8956 | 6.6286 | 16 | 2 | 10.7187 | 2.2022 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ldos/text_shortening_model_v66
Base model
google-t5/t5-small