text_shortening_model_v51

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4778
  • Rouge1: 0.5085
  • Rouge2: 0.2885
  • Rougel: 0.455
  • Rougelsum: 0.4548
  • Bert precision: 0.8747
  • Bert recall: 0.8765
  • Average word count: 8.5688
  • Max word count: 16
  • Min word count: 3
  • Average token count: 13.0873
  • % shortened texts with length > 12: 11.1111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.2018 1.0 83 1.7246 0.4863 0.2654 0.437 0.4366 0.8646 0.8704 9.1111 18 3 13.5952 15.3439
1.7958 2.0 166 1.5840 0.4838 0.2672 0.4335 0.4329 0.8659 0.8697 8.8228 17 3 13.3386 13.2275
1.6387 3.0 249 1.5093 0.4927 0.2733 0.4416 0.4421 0.868 0.8728 8.9339 17 4 13.4656 15.0794
1.5337 4.0 332 1.4567 0.4967 0.2722 0.4399 0.4402 0.8681 0.8745 9.0847 17 4 13.6614 17.1958
1.4477 5.0 415 1.4176 0.5015 0.2728 0.4432 0.443 0.8698 0.8738 8.836 17 4 13.3069 13.4921
1.3548 6.0 498 1.3917 0.5068 0.28 0.4494 0.4498 0.8698 0.8771 9.1429 17 4 13.7222 15.6085
1.3128 7.0 581 1.3777 0.5054 0.2856 0.4452 0.4445 0.8698 0.8772 9.1323 17 5 13.7037 14.8148
1.2417 8.0 664 1.3575 0.5118 0.2904 0.4587 0.4591 0.8737 0.8779 8.8228 17 3 13.3466 12.963
1.1854 9.0 747 1.3508 0.5121 0.2894 0.4549 0.4552 0.8723 0.8768 8.828 18 4 13.418 13.4921
1.1384 10.0 830 1.3482 0.5203 0.2918 0.458 0.4579 0.8742 0.8809 9.0767 17 4 13.7196 14.2857
1.0986 11.0 913 1.3373 0.5083 0.2874 0.453 0.4521 0.8726 0.8765 8.8333 16 3 13.3254 12.963
1.0575 12.0 996 1.3345 0.5106 0.2872 0.4557 0.4552 0.8716 0.8773 9.045 17 3 13.5979 15.6085
1.0196 13.0 1079 1.3331 0.5127 0.2876 0.4578 0.4571 0.8734 0.8781 8.8836 16 3 13.4762 13.4921
0.9666 14.0 1162 1.3465 0.5052 0.2807 0.4467 0.4461 0.8717 0.8764 8.9048 16 3 13.3228 12.1693
0.9521 15.0 1245 1.3419 0.5053 0.2828 0.4464 0.4458 0.8727 0.8748 8.6508 16 3 13.0952 12.4339
0.917 16.0 1328 1.3438 0.512 0.2936 0.4563 0.456 0.8743 0.8784 8.7778 16 3 13.3783 13.7566
0.8852 17.0 1411 1.3436 0.5034 0.2753 0.4434 0.4422 0.871 0.8743 8.6984 16 3 13.1958 12.963
0.8778 18.0 1494 1.3529 0.5036 0.2765 0.4409 0.4404 0.8711 0.8748 8.7143 16 3 13.2646 11.9048
0.8513 19.0 1577 1.3494 0.5127 0.2886 0.4512 0.4508 0.8733 0.8783 8.7937 16 3 13.4233 11.3757
0.8265 20.0 1660 1.3512 0.5133 0.2854 0.4552 0.455 0.8724 0.8784 8.9497 16 4 13.5582 12.4339
0.8058 21.0 1743 1.3561 0.5087 0.2825 0.452 0.4516 0.8722 0.8765 8.8016 16 4 13.3122 11.9048
0.7751 22.0 1826 1.3602 0.5022 0.2802 0.4459 0.4455 0.8726 0.8741 8.5556 16 3 12.9656 9.7884
0.7625 23.0 1909 1.3737 0.5077 0.2827 0.4518 0.4515 0.874 0.8747 8.4444 16 3 12.9259 8.4656
0.7568 24.0 1992 1.3807 0.5078 0.284 0.4527 0.4523 0.8737 0.8758 8.5423 16 3 13.0741 8.4656
0.7309 25.0 2075 1.3857 0.5105 0.2863 0.4522 0.4528 0.8743 0.8761 8.5661 16 3 13.1296 10.8466
0.7115 26.0 2158 1.3948 0.5107 0.2887 0.4556 0.4554 0.8743 0.8777 8.6561 16 3 13.2381 10.582
0.6933 27.0 2241 1.4063 0.5155 0.2905 0.4582 0.4583 0.8748 0.8778 8.7116 16 3 13.3201 10.8466
0.6751 28.0 2324 1.4170 0.5109 0.2894 0.453 0.4529 0.8748 0.8764 8.5635 16 3 13.1561 10.582
0.6655 29.0 2407 1.4178 0.5105 0.2821 0.4513 0.4506 0.8744 0.8767 8.6349 16 3 13.1429 11.9048
0.6577 30.0 2490 1.4196 0.5112 0.2895 0.4506 0.451 0.8735 0.8779 8.8439 16 3 13.4339 12.963
0.6584 31.0 2573 1.4155 0.51 0.285 0.4523 0.4526 0.8745 0.876 8.5926 16 3 13.0608 10.582
0.6464 32.0 2656 1.4257 0.5095 0.2882 0.455 0.4553 0.8753 0.876 8.5423 16 3 13.0794 9.2593
0.6319 33.0 2739 1.4304 0.5112 0.2886 0.4559 0.456 0.8752 0.8768 8.5661 16 3 13.1085 9.7884
0.6236 34.0 2822 1.4383 0.5117 0.2922 0.4581 0.4589 0.8753 0.8771 8.5741 16 3 13.1534 11.1111
0.6045 35.0 2905 1.4499 0.5081 0.2891 0.4561 0.4561 0.8742 0.8761 8.5529 16 3 13.1138 10.582
0.6041 36.0 2988 1.4628 0.5111 0.2875 0.455 0.4552 0.8747 0.8766 8.6111 16 3 13.1429 10.582
0.5983 37.0 3071 1.4532 0.512 0.2886 0.4559 0.4562 0.8751 0.8781 8.672 16 3 13.2196 10.582
0.5869 38.0 3154 1.4504 0.5108 0.2857 0.4555 0.4551 0.8747 0.8783 8.7407 16 3 13.3148 11.3757
0.5875 39.0 3237 1.4620 0.5061 0.2859 0.4535 0.4537 0.8741 0.8759 8.5899 16 3 13.1058 10.8466
0.5722 40.0 3320 1.4642 0.5088 0.2858 0.4549 0.4546 0.874 0.8772 8.672 16 3 13.2116 10.8466
0.5818 41.0 3403 1.4630 0.5109 0.288 0.4561 0.456 0.8748 0.8771 8.5979 16 3 13.127 10.3175
0.5694 42.0 3486 1.4699 0.5113 0.2887 0.4567 0.4566 0.8754 0.8764 8.5317 16 3 13.0238 10.3175
0.5575 43.0 3569 1.4752 0.5111 0.2914 0.4574 0.4575 0.8751 0.8762 8.5106 16 3 12.963 10.3175
0.5566 44.0 3652 1.4740 0.5097 0.2878 0.4553 0.4554 0.8746 0.8769 8.619 16 3 13.1296 10.8466
0.5654 45.0 3735 1.4732 0.5048 0.2849 0.4519 0.4518 0.8738 0.8754 8.5529 16 3 13.0529 10.582
0.5569 46.0 3818 1.4763 0.5089 0.2889 0.4564 0.4562 0.8749 0.8765 8.5344 16 3 13.0397 10.0529
0.5527 47.0 3901 1.4786 0.5109 0.2895 0.4562 0.4566 0.8751 0.8771 8.6217 16 3 13.1508 11.3757
0.5461 48.0 3984 1.4769 0.5069 0.2869 0.454 0.4538 0.8742 0.8761 8.6085 16 3 13.1138 11.9048
0.5476 49.0 4067 1.4775 0.5084 0.2871 0.4537 0.4534 0.8747 0.8764 8.545 16 3 13.0529 10.8466
0.5525 50.0 4150 1.4778 0.5085 0.2885 0.455 0.4548 0.8747 0.8765 8.5688 16 3 13.0873 11.1111

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
104
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ldos/text_shortening_model_v51

Base model

google-t5/t5-small
Finetuned
(1709)
this model