Edit model card

text_shortening_model_v23

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5992
  • Rouge1: 0.5244
  • Rouge2: 0.3068
  • Rougel: 0.4711
  • Rougelsum: 0.4712
  • Bert precision: 0.8806
  • Bert recall: 0.8799
  • Average word count: 9.7031
  • Max word count: 15
  • Min word count: 5
  • Average token count: 14.5895
  • % shortened texts with length > 12: 13.5371

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.2171 1.0 100 1.7694 0.514 0.2977 0.4697 0.4699 0.8711 0.8789 10.7598 17 3 15.5764 29.6943
1.8398 2.0 200 1.6351 0.5161 0.3041 0.4676 0.4683 0.8737 0.8815 10.655 17 4 15.5284 26.6376
1.6309 3.0 300 1.5497 0.5277 0.3192 0.4741 0.4749 0.8799 0.8836 10.179 17 6 15.0218 20.9607
1.5015 4.0 400 1.4933 0.5295 0.3196 0.4783 0.4787 0.8768 0.8838 10.5371 17 6 15.393 24.4541
1.3868 5.0 500 1.4555 0.5311 0.3235 0.4721 0.4726 0.8776 0.8839 10.5022 17 5 15.4323 24.4541
1.3147 6.0 600 1.4297 0.5312 0.3234 0.476 0.4768 0.8796 0.8826 10.0917 17 5 14.9563 19.214
1.2207 7.0 700 1.4147 0.5256 0.315 0.4747 0.4753 0.877 0.8837 10.4148 17 5 15.3537 23.1441
1.1465 8.0 800 1.3993 0.521 0.3112 0.4691 0.4698 0.8784 0.8819 10.179 17 5 15.0262 18.7773
1.1006 9.0 900 1.3868 0.5235 0.3122 0.4701 0.4707 0.8766 0.8819 10.3231 17 5 15.179 21.3974
1.0469 10.0 1000 1.3790 0.5174 0.3028 0.4644 0.4647 0.877 0.8811 10.1266 17 5 15.0306 17.0306
0.978 11.0 1100 1.3848 0.5226 0.3015 0.4697 0.4704 0.8779 0.8818 10.1528 17 5 15.1397 16.5939
0.9379 12.0 1200 1.3937 0.5129 0.2966 0.457 0.4575 0.8772 0.88 10.1048 17 6 14.9301 18.3406
0.8987 13.0 1300 1.3858 0.5203 0.3057 0.4673 0.4679 0.8798 0.8812 9.9738 17 5 14.8472 14.8472
0.8455 14.0 1400 1.3936 0.519 0.3028 0.4636 0.4639 0.8788 0.88 9.9476 17 5 14.8734 17.0306
0.8106 15.0 1500 1.3965 0.5293 0.3145 0.4771 0.4778 0.8819 0.8828 9.7773 17 5 14.6376 14.4105
0.7857 16.0 1600 1.4079 0.5239 0.3105 0.4698 0.4702 0.8792 0.8807 9.9127 17 5 14.8166 16.5939
0.7661 17.0 1700 1.4106 0.5192 0.3058 0.4657 0.4663 0.8787 0.8797 9.9214 17 5 14.6856 17.4672
0.7239 18.0 1800 1.4206 0.5226 0.307 0.4683 0.469 0.8797 0.8813 9.8646 17 5 14.8297 14.4105
0.7021 19.0 1900 1.4213 0.5183 0.3052 0.467 0.4669 0.8801 0.8796 9.6943 17 5 14.5066 11.7904
0.6752 20.0 2000 1.4283 0.5263 0.3102 0.4767 0.4777 0.8819 0.8815 9.6638 17 5 14.5415 11.7904
0.6642 21.0 2100 1.4261 0.5286 0.3132 0.4746 0.4753 0.8818 0.8808 9.607 17 5 14.4148 10.0437
0.6319 22.0 2200 1.4426 0.5343 0.315 0.4763 0.4765 0.8809 0.8819 10.0 17 5 14.821 16.1572
0.6149 23.0 2300 1.4537 0.5334 0.3182 0.4808 0.4807 0.8821 0.8811 9.6943 17 5 14.5066 13.5371
0.6063 24.0 2400 1.4483 0.528 0.3117 0.4712 0.4719 0.8808 0.8816 9.8035 17 5 14.607 15.2838
0.57 25.0 2500 1.4770 0.5234 0.3059 0.4644 0.4647 0.8814 0.8799 9.6288 17 5 14.3755 13.9738
0.5585 26.0 2600 1.4928 0.5232 0.3059 0.47 0.47 0.8795 0.8812 9.8865 17 5 14.6638 14.4105
0.5568 27.0 2700 1.4829 0.529 0.3059 0.4703 0.4704 0.8811 0.881 9.7773 17 5 14.5459 14.4105
0.5404 28.0 2800 1.5009 0.5196 0.3028 0.4664 0.4666 0.8788 0.8789 9.7598 15 5 14.6419 13.9738
0.5253 29.0 2900 1.5142 0.5168 0.2952 0.4614 0.4617 0.8797 0.8778 9.5502 15 5 14.262 12.2271
0.5176 30.0 3000 1.5150 0.523 0.3035 0.4658 0.4659 0.8788 0.881 10.0393 17 5 14.7904 19.214
0.5002 31.0 3100 1.5348 0.5291 0.3074 0.471 0.4713 0.8791 0.882 10.0262 17 5 14.8559 19.214
0.4944 32.0 3200 1.5343 0.5183 0.3028 0.4674 0.468 0.8798 0.8791 9.69 17 5 14.4279 13.9738
0.493 33.0 3300 1.5319 0.5245 0.3027 0.4685 0.4686 0.88 0.8803 9.7948 17 5 14.6594 14.4105
0.4617 34.0 3400 1.5453 0.5258 0.3052 0.4685 0.4691 0.8807 0.8815 9.7598 17 5 14.6026 13.1004
0.4642 35.0 3500 1.5520 0.532 0.3119 0.478 0.4785 0.8821 0.8825 9.8035 17 5 14.6157 15.2838
0.4559 36.0 3600 1.5570 0.5239 0.3109 0.4694 0.4703 0.8801 0.8815 9.8079 17 5 14.7205 13.9738
0.4435 37.0 3700 1.5606 0.5222 0.3058 0.4666 0.467 0.8792 0.8799 9.7729 17 5 14.6288 14.4105
0.4423 38.0 3800 1.5744 0.524 0.3089 0.4682 0.4687 0.881 0.88 9.7162 15 5 14.4803 13.9738
0.4399 39.0 3900 1.5732 0.5245 0.3127 0.4718 0.4721 0.8802 0.881 9.7729 15 5 14.6681 13.9738
0.4265 40.0 4000 1.5692 0.5306 0.3192 0.4784 0.4789 0.8831 0.8816 9.607 15 5 14.4061 11.7904
0.435 41.0 4100 1.5752 0.526 0.31 0.4734 0.474 0.8819 0.8803 9.6245 15 5 14.476 12.6638
0.414 42.0 4200 1.5803 0.5249 0.3091 0.4707 0.47 0.8813 0.8795 9.5939 15 5 14.4061 12.6638
0.4161 43.0 4300 1.5888 0.5237 0.3045 0.4685 0.4676 0.8808 0.8799 9.6638 15 5 14.5153 12.2271
0.3968 44.0 4400 1.5946 0.5214 0.3049 0.4677 0.4676 0.8801 0.8803 9.7511 15 5 14.6376 13.1004
0.405 45.0 4500 1.5967 0.5234 0.3066 0.4692 0.4692 0.8808 0.8808 9.7598 15 5 14.6026 13.1004
0.4063 46.0 4600 1.5984 0.5238 0.3077 0.47 0.4703 0.8807 0.8809 9.8297 15 5 14.7031 15.2838
0.4006 47.0 4700 1.5971 0.5231 0.3082 0.4702 0.4697 0.8807 0.8804 9.7118 15 5 14.607 13.9738
0.4045 48.0 4800 1.5988 0.5232 0.3054 0.4707 0.4707 0.881 0.8803 9.6812 15 5 14.5721 13.5371
0.397 49.0 4900 1.5991 0.5244 0.3068 0.471 0.4711 0.8806 0.8799 9.7031 15 5 14.5983 13.5371
0.3963 50.0 5000 1.5992 0.5244 0.3068 0.4711 0.4712 0.8806 0.8799 9.7031 15 5 14.5895 13.5371

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v23

Base model

google-t5/t5-small
Finetuned
(1530)
this model