videomae-base-finetuned-isl-numbers
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1287
- Accuracy: 0.6444
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.4795 | 0.02 | 22 | 2.4767 | 0.0256 |
2.4249 | 1.02 | 44 | 2.4351 | 0.1026 |
2.4561 | 2.02 | 66 | 2.4196 | 0.1026 |
2.3841 | 3.02 | 88 | 2.3735 | 0.1026 |
2.5186 | 4.02 | 110 | 2.4258 | 0.0769 |
2.3806 | 5.02 | 132 | 2.3214 | 0.1538 |
2.3579 | 6.02 | 154 | 2.2858 | 0.1538 |
2.2955 | 7.02 | 176 | 2.1729 | 0.1795 |
2.1351 | 8.02 | 198 | 1.9503 | 0.3333 |
2.1626 | 9.02 | 220 | 2.1922 | 0.2051 |
2.0905 | 10.02 | 242 | 1.8453 | 0.3333 |
1.7091 | 11.02 | 264 | 1.6305 | 0.4872 |
1.6316 | 12.02 | 286 | 1.6529 | 0.3333 |
1.6399 | 13.02 | 308 | 1.7789 | 0.2308 |
1.5139 | 14.02 | 330 | 1.6245 | 0.3590 |
1.3315 | 15.02 | 352 | 1.6540 | 0.2821 |
1.0726 | 16.02 | 374 | 1.7507 | 0.2821 |
1.1432 | 17.02 | 396 | 1.6282 | 0.3333 |
1.144 | 18.02 | 418 | 1.3435 | 0.5128 |
0.987 | 19.02 | 440 | 0.8631 | 0.7949 |
0.8152 | 20.02 | 462 | 1.0812 | 0.5897 |
0.8175 | 21.02 | 484 | 1.4527 | 0.4359 |
0.7587 | 22.02 | 506 | 1.2309 | 0.5128 |
0.6255 | 23.02 | 528 | 1.1940 | 0.4872 |
0.6867 | 24.02 | 550 | 0.9270 | 0.5385 |
0.7537 | 25.02 | 572 | 0.6586 | 0.7436 |
0.6147 | 26.02 | 594 | 0.7935 | 0.7179 |
0.4602 | 27.02 | 616 | 0.9698 | 0.6154 |
0.482 | 28.02 | 638 | 0.9328 | 0.6410 |
0.3436 | 29.02 | 660 | 0.9947 | 0.6154 |
0.336 | 30.02 | 682 | 0.8127 | 0.6410 |
0.3952 | 31.02 | 704 | 0.5542 | 0.8205 |
0.2922 | 32.02 | 726 | 1.3266 | 0.5897 |
0.2998 | 33.02 | 748 | 0.9621 | 0.6410 |
0.2824 | 34.02 | 770 | 0.7805 | 0.7436 |
0.2971 | 35.02 | 792 | 0.4700 | 0.8462 |
0.1746 | 36.02 | 814 | 0.6059 | 0.8205 |
0.1325 | 37.02 | 836 | 0.4568 | 0.7436 |
0.2452 | 38.02 | 858 | 0.3495 | 0.8462 |
0.161 | 39.02 | 880 | 0.2546 | 0.9231 |
0.1788 | 40.02 | 902 | 0.3275 | 0.8974 |
0.201 | 41.02 | 924 | 0.3987 | 0.8205 |
0.259 | 42.02 | 946 | 0.5395 | 0.7692 |
0.112 | 43.02 | 968 | 0.4591 | 0.8462 |
0.0622 | 44.02 | 990 | 0.3455 | 0.8462 |
0.1307 | 45.02 | 1012 | 0.5513 | 0.7436 |
0.0924 | 46.02 | 1034 | 0.6709 | 0.7436 |
0.056 | 47.02 | 1056 | 0.4471 | 0.8205 |
0.089 | 48.02 | 1078 | 0.3860 | 0.8205 |
0.1798 | 49.02 | 1100 | 0.4313 | 0.8462 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.